
CS 202: Advanced Operating

Systems

Lottery Scheduling

1

Problems with Traditional schedulers

Priority systems are ad hoc: highest priority always wins

Try to support fair share by adjusting priorities with a

feedback loop

Works over long term

highest priority still wins all the time, but now the Unix priorities

are always changing

Priority inversion: high-priority jobs can be blocked

behind low-priority jobs

Schedulers are complex and difficult to control

Lottery scheduling

Elegant way to implement proportional share

scheduling

Priority determined by the number of tickets

each thread has:

Priority is the relative percentage of all of the tickets

whose owners compete for the resource

Scheduler picks winning ticket randomly, gives

owner the resource

Tickets can be used for a variety of resources

Example

Three threads

A has 5 tickets

B has 3 tickets

C has 2 tickets

If all compete for the resource

B has 30% chance of being selected

If only B and C compete

B has 60% chance of being selected

It’s fair

Lottery scheduling is probabilistically fair

If a thread has a t tickets out of T

Its probability of winning a lottery is p = t/T

Its expected number of wins over n drawings is

np

Binomial distribution

Variance σ2 = np(1 – p)

Fairness (II)

Coefficient of variation of number of wins

σ/np = √((1-p)/np)

Decreases with √n

Number of tries before winning the lottery

follows a geometric distribution

As time passes, each thread ends receiving

its share of the resource

Ticket transfers

How to deal with dependencies?

Explicit transfers of tickets from one client to another

Transfers can be used whenever a client blocks due to

some dependency

When a client waits for a reply from a server, it can temporarily

transfer its tickets to the server

Server has no tickets of its own

Server priority is sum of priorities of its active clients

Can use lottery scheduling to give service to the clients

Similar to priority inheritance

Can solve priority inversion

Ticket inflation

Let users create new tickets

Like printing their own money

Counterpart is ticket deflation

Let mutually trusting clients adjust their priorities

dynamically without explicit communication

Currencies: set up an exchange rate

Enables inflation within a group

Simplifies mini-lotteries (e.g., for mutexes)

Example (I)

A process manages three threads

A has 5 tickets

B has 3 tickets

C has 2 tickets

It creates 10 extra tickets and assigns them

to thread C

Why?

Process now has 20 tickets

Example (II)

These 20 tickets are in a new currency

whose exchange rate with the base currency

is 10/20

The total value of the process’ tickets

expressed in the base currency is still equal

to 10

Compensation tickets (I)

I/O-bound threads likely get less than their

fair share of the CPU because they often

block before their CPU quantum expires

Compensation tickets address this imbalance

Compensation tickets (II)

 A client that consumes only a fraction f of its

CPU quantum can be granted a

compensation ticket

Ticket inflates the value by 1/f until the client

starts gets the CPU

Example

CPU quantum is 100 ms

Client A releases the CPU after 20ms

 f = 0.2 or 1/5

Value of all tickets owned by A will be

multiplied by 5 until A gets the CPU

Compensation tickets (III)

Compensation tickets

Favor I/O-bound—and interactive—threads

Helps them getting their fair share of the CPU

Implementation

On a MIPS-based DEC station running Mach

3 microkernel

Time slice is 100ms

Fairly large as scheme does not allow preemption

Requires

A fast RNG

A fast way to pick lottery winner

Example

Three threads

A has 5 tickets

B has 3 tickets

C has 2 tickets

List contains

A (0-4)

B (5-7)

C (8-9)

Search time is O(n)
where n is list length

Optimization – use tree

4

A 7

B C

≤

≤

>

>
RB Tree used in Linux

Completely fair scheduler(CFS)

--not lottery based

Long-term fairness (I)

Short term fluctuations

For

2:1

ticket

alloc.

ratio

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Problems with Traditional schedulers
	Slide 3: Lottery scheduling
	Slide 4: Example
	Slide 5: It’s fair
	Slide 6: Fairness (II)
	Slide 7: Ticket transfers
	Slide 8: Ticket inflation
	Slide 9: Example (I)
	Slide 10: Example (II)
	Slide 11: Compensation tickets (I)
	Slide 12: Compensation tickets (II)
	Slide 13: Example
	Slide 14: Compensation tickets (III)
	Slide 15: Implementation
	Slide 16: Example
	Slide 17: Optimization – use tree
	Slide 18: Long-term fairness (I)
	Slide 19: Short term fluctuations

