
CS 202: Advanced Operating 

Systems

Synchronization, Memory Consistency, and 
Cache Coherence (some cache coherence 
slides adapted from Ian Watson; some memory 
consistency slides from Sarita Adve)



Classic Example

Suppose we have to implement a function to handle 

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

Now suppose that you and your father share a bank 

account with a balance of $1000

Then you each go to separate ATM machines and 

simultaneously withdraw $100 from the account
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Interleaved Schedules

The problem is that the execution of the two 

threads can be interleaved:

What is the balance of the account now?
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balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

put_balance(account, balance);

Execution 

sequence 

seen by CPU Context switch



Shared Resources

Problem: two threads accessed a shared resource 

Known as a race condition (remember this buzzword!)

Need mechanisms to control this access

So we can reason about how the program will operate

Our example was updating a shared bank account

Also necessary for synchronizing access to any shared 

data structure

Buffers, queues, lists, hash tables, etc.



When Are Resources Shared?

Local variables?

Not shared: refer to data on the stack

Each thread has its own stack

Never pass/share/store a pointer to a local 

variable on the stack for thread T1 to another 

thread T2

Global variables and static objects?

 Shared: in static data segment, accessible by 

all threads

Dynamic objects and other heap objects?

 Shared: Allocated from heap with malloc/free or 

new/delete

Stack (T1)
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Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1



How Interleaved Can It Get?

How contorted can the interleavings be?

We'll assume that the only atomic operations are 
reads and writes of individual memory locations

Some architectures don't even give you that!

We'll assume that a context
switch can occur at any time

We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance = ...................................



Mutual Exclusion

Mutual exclusion to synchronize access to shared 
resources

This allows us to have larger atomic blocks

What does atomic mean?

Code that uses mutual called a critical section
Only one thread at a time can execute in the critical section

All other threads are forced to wait on entry

When a thread leaves a critical section, another can enter

Example: sharing an ATM with others

What requirements would you place on a critical section?
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Using Locks
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withdraw (account, amount) {

    acquire(lock);

    balance = get_balance(account);

    balance = balance – amount;

    put_balance(account, balance);

    release(lock);

    return balance;

}

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

acquire(lock);

put_balance(account, balance);

release(lock);

Critical 

Section



Using Test-And-Set

Here is our lock implementation with test-and-set:

When will the while return?  What is the value of held?

Does it satisfy critical region requirements? (mutex, 

progress, bounded wait, performance?)

struct lock {

    int held = 0;

}

void acquire (lock) {

    while (test-and-set(&lock->held));

}

void release (lock) {

    lock->held = 0;

}

//Atomic!!!

test-and-set(lock) { 

    boolean initial = lock; 

    lock = true; 

    return initial; 

}



Another solution: Disabling Interrupts

Another implementation of acquire/release is to disable 

interrupts:

Note that there is no state associated with the lock

Can two threads disable interrupts simultaneously?

struct lock {

}

void acquire (lock) {

    disable interrupts;

}

void release (lock) {

    enable interrupts;

}



On Disabling Interrupts

Disabling interrupts blocks notification of external events 

that could trigger a context switch (e.g., timer)

In a “real” system, this is only available to the kernel

Why?

Disabling interrupts is insufficient on a multiprocessor

Back to atomic instructions

Like spinlocks, only want to disable interrupts to 

implement higher-level synchronization primitives 

Don’t want interrupts disabled between acquire and release



Summarize Where We Are

Goal: Use mutual exclusion to protect critical sections of 

code that access shared resources

Method: Use locks (spinlocks or disable interrupts)

Problem: Critical sections can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts: 

 Should not disable interrupts 

for long periods of time

 Can miss or delay important 

events (e.g., timer, I/O)

 Doesn’t work for 

multiprocessor

Spinlocks: 

 Threads waiting to acquire lock 

spin in test-and-set loop

 Wastes CPU cycles

 Longer the CS, the longer the 

spin

 Greater the chance for lock 

holder to be interrupted

Memory consistency model 

causes problems (out of scope of 

this class)



Semaphore



Higher-Level Synchronization

Locks so far inefficient when critical sections are long
Spinlocks – inefficient

Disabling interrupts – can miss or delay important events

Instead, we want synchronization mechanisms that
Block waiters

Leave interrupts enabled inside the critical section

Plan: 

Semaphores: binary (mutex) and counting

Use them to solve common synchronization problems



Semaphores

Semaphores are an abstract data type that provide 
mutual exclusion to critical sections

Block waiters, interrupts enabled within critical section

Described by Dijkstra in THE system in 1968

Semaphores are integers that support two operations:
sem_wait(sem_t *s): wait if the value is zero; otherwise, 
decrement

Also P(), after the Dutch word for test, or down()

sem_post(sem_t *s): if one thread waiting, wake it; otherwise, 
increment

Also V() after the Dutch word for increment, or up()

That's it! No other operations – not even just reading its value – 
exist

Semaphore safety property: the semaphore value is 
always greater than or equal to 0



Semaphore Types

Semaphores come in two types

Mutex semaphore (or binary semaphore)

Represents single access to a resource

Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)

Multiple threads pass the semaphore determined by 

count

mutex has count = 1, counting has count = N

Represents a resource with many units available

or a resource allowing some unsynchronized 

concurrent access (e.g., reading)



Protecting a critical region



A parent waiting for its child 



Producer/ Consumer (Bounded Buffer)



Second Attempt (Add Mutual 

Exclusion)



Third Attempt

Any more improvement?



Reader-Writer Lock



Dining Philosophers

What is wrong?

How to fix it?



Solution: Break Dependency

Can you think of another solution?



Semaphore Summary

Semaphores can be used to solve any of the traditional 

synchronization problems

However, they have some drawbacks

They are essentially shared global variables

Can potentially be accessed anywhere in program

No connection between the semaphore and the data being controlled 

by the semaphore

Used both for critical sections (mutual exclusion) and coordination 

(scheduling)

Note that I had to use comments in the code to distinguish

No control or guarantee of proper usage

Sometimes hard to use and prone to bugs

Another approach: Use programming language support



Overview

Before we talk deeply about synchronization

Need to get an idea about the memory model in shared memory 

systems

Is synchronization only an issue in multi-processor systems?

What is a shared memory processor (SMP)?

Shared memory processors 

Two primary architectures:

Bus-based/local network shared-memory machines (small-scale)

Directory-based shared-memory machines (large-scale)
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