
CS202: Advanced

Operating Systems
Cache Coherence, Concurrency and Memory Consistency

References:

• Shared Memory Consistency Models: A Tutorial, Sarita V. Adve & Kourosh Gharachorloo,

September 1995

• A primer on memory consistency and cache coherence, Sorin, Hill and wood, 2011 (chapters 3 and

4)

• Memory Models: A Case for Rethinking Parallel Languages and Hardware, Adve and Boehm,

2010

1

Crash course on

cache coherence

2

Bus-based Shared Memory Organization

Basic picture is simple :-

3

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared

Memory

Organization

Bus is usually simple physical connection

(wires)

Bus bandwidth limits no. of CPUs

Could be multiple memory elements

For now, assume that each CPU has only a

single level of cache

4

Problem of Memory Coherence

Assume just single level caches and main

memory

Processor writes to location in its cache

Other caches may hold shared copies - these

will be out of date

Updating main memory alone is not enough

What happens if two updates happen at (nearly)

the same time?

Can two different processors see them out of order?

5

Example

6

CPU

Cache

CPU

Cache

CPU

Cache

Shared Bus

Shared

Memory

X: 24

Processor 1 reads X: obtains 24 from memory and caches it

Processor 2 reads X: obtains 24 from memory and caches it

Processor 1 writes 32 to X: its locally cached copy is updated

Processor 3 reads X: what value should it get?

 Memory and processor 2 think it is 24

 Processor 1 thinks it is 32

Notice that having write-through caches is not good enough

1 2 3

Cache Coherence

Try to make the system behave as if there are
no caches!

How? Idea: Try to make every CPU know who has a
copy of its cached data?

too complex!

More practical:
Snoopy caches

Each CPU snoops memory bus

Looks for read/write activity concerned with data addresses which it
has cached.

What does it do with them?

This assumes a bus structure where all communication can be seen
by all.

More scalable solution: ‘directory based’ coherence
schemes

7

Snooping Protocols

Write Invalidate

CPU with write operation sends invalidate
message

Snooping caches invalidate their copy

CPU writes to its cached copy

Write through or write back?

Any shared read in other CPUs will now miss in
cache and re-fetch new data.

8

Snooping Protocols

Write Update

CPU with write updates its own copy

All snooping caches update their copy

Note that in both schemes, problem of

simultaneous writes is taken care of by bus

arbitration - only one CPU can use the bus at

any one time.

Harder problem for arbitrary networks

9

Update or Invalidate?

Which should we use?

Bus bandwidth is a precious commodity in
shared memory multi-processors

Contention/cache interrogation can lead to 10x or
more drop in performance

(also important to minimize false sharing)

Therefore, invalidate protocols used in most
commercial SMPs

10

Cache Coherence summary

Reads and writes are atomic

What does atomic mean?

As if there is no cache

Some magic to make things work

Have performance implications

…and therefore, have implications on

performance of programs

11

Memory Consistency

Formal specification of memory semantics

Guarantees as to how shared memory will

behave on systems with multiple processors

Ordering of reads and writes

Essential for programmer (OS writer!) to

understand

12

Why Bother?

Memory consistency models affect everything

Programmability

Performance

Portability

Model must be defined at all levels

Programmers and system designers care

13

Uniprocessor Systems

Memory operations occur:

One at a time

In program order

Read returns value of last write

Only matters if location is the same or dependent

Many possible optimizations

Intuitive!

14

How does a core reorder? (1)

Store-store reordering:

Non-FIFO write buffer

Load-load or load-store/store-load reordering:

Out of order execution

Should the hardware prevent any of this

behavior?

15

Multiprocessor: Example

16

Cont’d

S2 and S1 reordered

Why? How?

17

Example 2

18

Sequential Consistency

The result of any

execution is the same

as if all operations

were executed on a

single processor

Operations on each

processor occur in the

sequence specified by

the executing program

19

P1 P2 P3 Pn…

Memory

20

One execution sequence

21

S.C. Disadvantages

Difficult to implement!

Huge lost potential for optimizations

Hardware (cache) and software (compiler)

Be conservative: err on the safe side

Major performance hit

22

Relaxed Consistency

Program Order relaxations (different locations)

W → R; W → W; R → R/W

Write Atomicity relaxations

Read returns another processor’s Write early

Combined relaxations

Read your own Write (okay for S.C.)

Safety Net – available synchronization

operations

Note: assume one thread per core

23

Synchronization is broken!

How can we solve this problem?

Answer: Memory Barrier/Fence

A special complier or CPU instruction that

enforces an ordering constraint

Compiler: asm volatile ("" ::: "memory");

CPU: mfence/lfence

	Slide 1: CS202: Advanced Operating Systems
	Slide 2: Crash course on cache coherence
	Slide 3: Bus-based Shared Memory Organization
	Slide 4: Organization
	Slide 5: Problem of Memory Coherence
	Slide 6: Example
	Slide 7: Cache Coherence
	Slide 8: Snooping Protocols
	Slide 9: Snooping Protocols
	Slide 10: Update or Invalidate?
	Slide 11: Cache Coherence summary
	Slide 12: Memory Consistency
	Slide 13: Why Bother?
	Slide 14: Uniprocessor Systems
	Slide 15: How does a core reorder? (1)
	Slide 16: Multiprocessor: Example
	Slide 17: Cont’d
	Slide 18: Example 2
	Slide 19: Sequential Consistency
	Slide 20
	Slide 21: One execution sequence
	Slide 22: S.C. Disadvantages
	Slide 23: Relaxed Consistency
	Slide 24: Synchronization is broken!

