
CS 202: Advanced Operating 

Systems

Distributed OS– intro and discussion



Overview

Hardware is changing, so software must too

Multicores are here to stay

Architectures are heterogeneous

Applications are unpredictable unlike specialized 

systems

How do operating systems scale?

Do we need new OS architectures?

2



Landscape/motivation

Systems are diverse

different implementations require different tradeoffs

Some nice examples

Cores are increasingly diverse

Different general-purpose cores

Accelerators and specialized processors

Typically cannot share an OS with such differences

Interconnects matter: within cores and across 

cores

3



What has gone on before?

Early on, locks were not so expensive

Just use them

Hardware evolved, memory expensive

Large caches

Cache coherence

NUMA machines 

Increasing gap between memory and processor

Shared memory expensive!

4



The Multikernel: A New OS 

Architecture for Scalable 

Multicore Systems

By (last names):  Baumann, Barham, 

Dagand, Harris, Isaacs, Peter, 

Roscoe, Schupbach, Singhania

5



The Modern Kernel(s)

6

Monolithic Microkernel



The Problem with Modern Kernels

Modern Operating systems can no longer 

take serious advantage of the hardware 

they are running on

There exists a scalability issue in the 

shared memory model that many modern 

kernels abide by

Cache coherence overhead restricts the 

ability to scale to many-cores

7



Solution: MultiKernel

Treat the machine as a network of 

independent cores

Make all inter-core communication explicit; 

use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared

8



But wait! Isn’t message passing 

slower than Shared Memory?

Not at scale

9



But wait! Isn’t message passing 

slower than Shared Memory?

At scale it has been shown that message 

passing has surpassed shared memory 

efficiency

Shared memory at scale seems to be 

plagued by cache misses which cause core 

stalls

Hardware is starting to resemble a message-

passing network

10



But wait! Isn’t message passing 

slower than Shared Memory? 

(cont.)

11



But wait! Isn’t message passing 

slower than Shared Memory? 

(cont.)

12



The MultiKernel Model

13



Make inter-core communication explicit

All inter-core communication is performed 

using explicit messages

No shared memory between cores aside from 

the memory used for messaging channels

Explicit communication allows the OS to 

deploy well-known networking optimizations 

to make more efficient use of the interconnect

14



Make OS structure hardware-neutral

A multikernel separates the OS structure as 

much as possible from the hardware

Hardware-independence in a multikernel 

means that we can isolate the distributed 

communication algorithms from hardware 

details

Enable late binding of both the protocol 

implementation and message transport

15



View state as replicated

Shared OS state across cores is replicated 

and consistency maintained by exchanging 

messages 

Updates are exposed in API as non-blocking 

and split-phase as they can be long 

operations 

Reduces load on system interconnect, 

contention for memory, overhead for 

synchronization; improves scalability 

Preserve OS structure as hardware evolves 

16



In practice

Model represents an idea which may not be 

fully realizable

Certain platform-specific performance 

optimizations may be sacrificed – shared L2 

cache 

Cost and penalty of ensuring replica 

consistency varies on workload, data 

volumes and consistency model 

17



Barrelfish

18



Barrelfish Goals

Comparable performance to existing commodity OS on 

multicore hardware 

Scalability to large number of cores under considerable 

workload 

Ability to be re-targeted to different hardware without 

refactoring 

Exploit message-passing abstraction to achieve good 

performance by pipelining and batching messages 

Exploit modularity of OS and place OS functionality 

according to hardware topology or load 

19



System Structure

• Multiple independent OS instances 
communicating via explicit messages 

• OS instance on each core factored into 
privileged-mode CPU driver which is hardware 
dependent 

user-mode Monitor process: responsible for intercore 
communication, hardware independent 

System of monitors and CPU drivers provide 
scheduling, communication and low-level 
resource allocation 

Device drivers and system services run in user-
level processes 

20



CPU Drivers

Enforces protection, performs authorization, time-slices 

processes and mediates access to core and hardware 

Completely event-driven, single-threaded and 

nonpremptable 

Serially processes events in the form of traps from user 

processes or interrupts from devices or other cores 

Performs dispatch and fast local messaging between 

processes on core 

Implements lightweight, asynchronous (split-phase) 

same-core IPC facility 

21



Monitors

Schedulable, single-core user-space 

processes 

Collectively coordinate consistency of 

replicated data structures through agreement 

protocols 

Responsible for IPC setup 

Idle the core when no other processes on the 

core are runnable, waiting for IPI 

22



Process Structure

Process is represented by collection of 

dispatcher objects, one on each core which 

might execute it 

Communication is between dispatchers 

Dispatchers are scheduled by local CPU 

driver through upcall interface 

Dispatcher runs a core local user-level thread 

scheduler 

23



Inter-core communication

Variant of URPC for cache coherent memory 

– region of shared memory used as channel 

for cache-line-sized messages 

Implementation tailored to cache-coherence 

protocol to minimize number of interconnect 

messages

Dispatchers poll incoming channels for 

predetermined time before blocking with 

request to notify local monitor when message 

arrives 

24



Memory Management

Manage set of global resources: physical 
memory shared by applications and system 
services across multiple cores 

OS code and data stored in same memory - 
allocation of physical memory must be 
consistent 

Capability system – memory managed 
through system calls that manipulate 
capabilities 

All virtual memory management performed 
entirely by user-level code 

25



System Knowledge Base

System knowledge base (SKB) maintains knowledge of 

underlying hardware in subset of first-order logic 

Populated with information gathered through hardware 

discovery, online measurement, pre-asserted facts 

SKB allows concise expression of optimization queries

Allocation of device drivers to cores, NUMA-aware memory 

allocation in topology aware manner 

Selection of appropriate message transports for inter- core 

communication 

26



Experiences from Barrelfish 

implementation

• Separation of CPU driver and monitor adds constant 

overhead of local RPC rather than system calls 

Moving monitor into kernel space is at the cost of 

complex kernel-mode code base 

Differs from current OS designs on reliance on shared 

data as default communication mechanism 

Engineering effort to partition data is prohibitive 

Requires more effort to convert to replication model 

Shared-memory single-kernel model cannot deal with 

heterogeneous cores at ISA level 

27



Evaluation of Barrelfish 

The testing setup was not accurate

 making any quantitative conclusions from their 

benchmarks would be bad

Barrelfish performs reasonably on 

contemporary hardware

Barrelfish can scale well with core count

Gives authors confidence that multikernel can 

be a feasible alternative 

28



Evaluation

29


	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Overview
	Slide 3: Landscape/motivation
	Slide 4: What has gone on before?
	Slide 5: The Multikernel: A New OS Architecture for Scalable Multicore Systems
	Slide 6: The Modern Kernel(s)
	Slide 7: The Problem with Modern Kernels
	Slide 8: Solution: MultiKernel
	Slide 9: But wait! Isn’t message passing slower than Shared Memory?
	Slide 10: But wait! Isn’t message passing slower than Shared Memory?
	Slide 11: But wait! Isn’t message passing slower than Shared Memory? (cont.)
	Slide 12: But wait! Isn’t message passing slower than Shared Memory? (cont.)
	Slide 13: The MultiKernel Model
	Slide 14: Make inter-core communication explicit
	Slide 15: Make OS structure hardware-neutral
	Slide 16: View state as replicated
	Slide 17: In practice
	Slide 18: Barrelfish
	Slide 19: Barrelfish Goals
	Slide 20: System Structure
	Slide 21: CPU Drivers
	Slide 22: Monitors
	Slide 23: Process Structure
	Slide 24: Inter-core communication
	Slide 25: Memory Management
	Slide 26: System Knowledge Base
	Slide 27: Experiences from Barrelfish implementation
	Slide 28: Evaluation of Barrelfish 
	Slide 29: Evaluation

