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What are we going to talk about?

Scalability analysis of 7 system applications 

running on Linux on a 48-core computer

Exim, memcached, Apache, PostgreSQL, gmake, 

Psearchy and MapReduce

How can we improve the traditional Linux for 

better scalability
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Amdahl’s law

 If  𝛼 is the fraction of a calculation that is 

sequential, and 1 − 𝛼 is the fraction that can 

be parallelized, the maximum speedup that 

can be achieved by using P processors is 

given according to Amdahl's Law

   Speedup = 
1

𝛼+
1−𝛼

𝑃
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Introduction

Popular belief that traditional kernel designs 

won’t scale well on multicore processors

Can traditional kernel designs be used and 

implemented in a way that allows applications 

to scale?
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Why Linux? Why these applications?

Linux has a traditional kernel design and the 

Linux community has made a great progress 

in making it scalable

The chosen applications are designed for 

parallel execution and stress many major 

Linux kernel components
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How can we decide if Linux is 

scalable?

Measure scalability of the applications on a 

recent Linux kernel 
2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems

Kernel design is scalable if the changes are 

modest
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Kind of problems

Linux kernel implementation

Applications’ user-level design

Applications’ use of Linux kernel services
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The Applications

2 Types of applications

Applications that previous work has shown not to 

scale well on Linux

Memcached, Apache and Metis (MapReduce library)

Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to 

use the kernel intensively

Stress the network stack, file name cache, page 

cache, memory manager, process manager and 

scheduler
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Exim

Exim is a mail server

Single master process listens for incoming 
SMTP connections via TCP

The master forks a new process for each 
connection

Has a good deal of parallelism

Spends 69% of its time in the kernel on a 
single core

Stresses process creation and small file 
creation and deletion
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memcached – Object cache 

In-memory key-value store used to improve 

web application performance

Has key-value hash table protected by 

internal lock

Stresses the network stack, spending 80% of 

its time processing packets in the kernel at 

one core
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Apache – Web server

Popular web server

Single instance listening on port 80.

One process per core – each process has a 

thread pool to service connections

On a single core, a process spends 60% of 

the time in the kernel

Stresses network stack and the file system
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PostgreSQL

Popular open source SQL database

Makes extensive internal use of shared data 

structures and synchronization

Stores database tables as regular files 

accessed concurrently by all processes

For read-only workload, it spends 1.5% of the 

time in the kernel with one core, and 82% 

with 48 cores
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gmake

Implementation of the standard make utility 

that supports executing independent build 

rules concurrently

Unofficial default benchmark in the Linux 

community

Creates more processes than cores, and 

reads and writes many files

Spends 7.6% of the time in the kernel with one 

core
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Psearchy – File indexer

Parallel version of searchy, a program to 

index and query web pages

Version in the article runs searchy indexer on 

each core, sharing a work queue of input files
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Metis - MapReduce

MapReduce library for single multicore 

servers

Allocates large amount of memory to hold 

temporary tables, stressing the kernel 

memory allocator

Spends 3% of the time in the kernel with one 

core, 16% of the time with 48 cores
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Kernel Optimizations

Many of the bottlenecks are common to 

multiple applications

The solutions have not been implemented in 

the standard kernel because the problems 

are not serious on small-scale SMPs or are 

masked by I/O delays
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Quick intro to Linux file system

Superblock - The superblock is essentially file system metadata and 

defines the file system type, size, status, and information about 

other metadata structures (metadata of metadata)

Inode - An inode exists in a file system and represents metadata 

about a file.

Dentry - A dentry is the glue that holds inodes and files together by 

relating inode numbers to file names. Dentries also play a role in 

directory caching which, ideally, keeps the most frequently used files 

on-hand for faster access. File system traversal is another aspect of 

the dentry as it maintains a relationship between directories and 

their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

17



Common problems

The tasks may lock shared data structures, so 

that increasing the number of cores increases 

the lock wait time

The tasks may write a shared memory location, 

so that increasing the number of cores increases 

the time spent waiting for the cache coherence 

protocol
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Common problems - cont

The tasks may compete for space in a limited 

size shared hardware cache, so that increasing 

the number of cores increases the cache miss 

rate

The tasks may compete for other shared 

hardware resources such as DRAM interface

There may be too few tasks to keep all cores 

busy
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Cache related problems

Many scaling problems are delays caused by 

cache misses when a core uses data that 

other core have written

Sometimes cache coherence related 

operation take about the same time as 

loading data from off-chip RAM

The cache coherence protocol serializes 

modifications to the same cache line
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Multicore packet processing

The Linux network stack connects different stages of 

packet processing with queues

A received packet typically passes through multiple queues 

before arriving at per-socket queue

The performance would be better if each packet, queue 

and connection be handled by just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network cards with 

multiple hardware queues
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Multicore packet processing (2)

Transmitting – place outgoing packets on the 

hardware queue associated with the current 

core

Receiving – configure the hardware to 

enqueue incoming packets matching a 

particular criteria (source ip and port) on a 

specific queue

Sample outgoing packets and update hardware’s 

flow directing tables to deliver incoming packets 

from that connection directly to the core 
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Sloppy counters – The problem

Linux uses shared counters for reference 

counting and to manage various resources

Lock-free atomic inc and dec do not help 

because of cache coherence
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Sloppy counter – The solution

Each core holds a few spare references to an 

object

It gives ownership of these references to threads 

running on that core when needed, without having 

to modify the global reference count
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Sloppy counter - cont

Core increments the sloppy counter by 𝑉:

1. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑉
I. Get 𝑉 references and decrement 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 by 𝑉 and finish

2. Otherwise, acquire 𝑉 references from the central 

counter and increment the central counter by 𝑉

Core decrements the sloppy counter by 𝑉:

1. Release 𝑉 references for local use and decrement the 

local counter by 𝑉

2. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 release spare references 

by decrementing local count and central count 
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Sloppy counter - cont

Invariant:

σ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠+number of used resources = 

shared counter
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Sloppy counter - use

These counters are used for counting 

references to:

dentrys

vfsmounts

dst_entrys

track amount of memory allocated by each 

network protocol (such as TCP and UDP)
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Lock-free comparison

There are situations where there are 

bottlenecks because of low scalability of 

name lookups in the dentry cache

The dentry cache speed ups lookup by mapping a 

directory and a file name to a dentry identifying 

the matching inode

When a potential dentry is located, the lookup 

code acquires a per-dentry spin lock to atomically 

compare fields of the dentry with the arguments
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Lock-free comparison - cont

The search can be made lock-free

Use generation counter which is incremented 

after every modification. During modification 

temporarily set the generation counter to 0.

Comparison algorithm:
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Per core data structures

Kernel data structures that caused scaling 

bottlenecks:

Per super-block list of open files

Table of mount points

Pool of free packet buffers
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False sharing

Some applications caused false sharing in 

the kernel

  A variable the kernel updated often was 

located on the same cache

  line as a variable it read often
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Evaluation
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Technical details

The experiments were made on a 48 core 

machine 

Tyan Thunder S4985 board

8*(2.4 GHz 6-core AMD Opteron 8431 chips)

Each core has 64Kb L1 cache and 512Kb L2 

cache

The cores on each chip share 6Mb L3 cache

Each chip has 8Gb of local off-chip DRAM
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Exim
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Exim - modifications

Berkeley DB reads /proc/stat to find number 

of cores 

Modification: Cache this information aggressively

Split incoming queues messages across 62 

spool directories, hashing by per connection 

pid
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memcached
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memcached - modifications

False read/write sharing of IXGBE device 

driver data in the net_device and device 

structures

Modification: rearrange structures to isolate 

critical read-only members to their own cache 

lines

Contention on dst_entry structure’s reference 

count in the network stack’s destination 

cache

Modification: use sloppy counter
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Apache
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PostgreSQL
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PostgreSQL - cont
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gmake
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Psearchy/pedsort
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Metis
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Summary of Linux scalability 

problems
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Summary of Linux scalability 

problems - cont
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Summary of Linux scalability 

problems - cont
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Summary of Linux scalability 

problems - cont
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Summary of Bottlenecks
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Summary

Most applications can scale well to many 

cores with modest modifications to the 

applications and to the kernel

More bottlenecks are expected to be 

revealed when running on more cores
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