
CS 202: Advanced

Operating Systems

An Analysis of Linux Scalability to Many

Cores

1

What are we going to talk about?

Scalability analysis of 7 system applications

running on Linux on a 48-core computer

Exim, memcached, Apache, PostgreSQL, gmake,

Psearchy and MapReduce

How can we improve the traditional Linux for

better scalability

2

Amdahl’s law

 If 𝛼 is the fraction of a calculation that is

sequential, and 1 − 𝛼 is the fraction that can

be parallelized, the maximum speedup that

can be achieved by using P processors is

given according to Amdahl's Law

 Speedup =
1

𝛼+
1−𝛼

𝑃

3

Introduction

Popular belief that traditional kernel designs

won’t scale well on multicore processors

Can traditional kernel designs be used and

implemented in a way that allows applications

to scale?

4

Why Linux? Why these applications?

Linux has a traditional kernel design and the

Linux community has made a great progress

in making it scalable

The chosen applications are designed for

parallel execution and stress many major

Linux kernel components

5

How can we decide if Linux is

scalable?

Measure scalability of the applications on a

recent Linux kernel
2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems

Kernel design is scalable if the changes are

modest

6

Kind of problems

Linux kernel implementation

Applications’ user-level design

Applications’ use of Linux kernel services

7

The Applications

2 Types of applications

Applications that previous work has shown not to

scale well on Linux

Memcached, Apache and Metis (MapReduce library)

Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to

use the kernel intensively

Stress the network stack, file name cache, page

cache, memory manager, process manager and

scheduler

8

Exim

Exim is a mail server

Single master process listens for incoming
SMTP connections via TCP

The master forks a new process for each
connection

Has a good deal of parallelism

Spends 69% of its time in the kernel on a
single core

Stresses process creation and small file
creation and deletion

9

memcached – Object cache

In-memory key-value store used to improve

web application performance

Has key-value hash table protected by

internal lock

Stresses the network stack, spending 80% of

its time processing packets in the kernel at

one core

10

Apache – Web server

Popular web server

Single instance listening on port 80.

One process per core – each process has a

thread pool to service connections

On a single core, a process spends 60% of

the time in the kernel

Stresses network stack and the file system

11

PostgreSQL

Popular open source SQL database

Makes extensive internal use of shared data

structures and synchronization

Stores database tables as regular files

accessed concurrently by all processes

For read-only workload, it spends 1.5% of the

time in the kernel with one core, and 82%

with 48 cores

12

gmake

Implementation of the standard make utility

that supports executing independent build

rules concurrently

Unofficial default benchmark in the Linux

community

Creates more processes than cores, and

reads and writes many files

Spends 7.6% of the time in the kernel with one

core

13

Psearchy – File indexer

Parallel version of searchy, a program to

index and query web pages

Version in the article runs searchy indexer on

each core, sharing a work queue of input files

14

Metis - MapReduce

MapReduce library for single multicore

servers

Allocates large amount of memory to hold

temporary tables, stressing the kernel

memory allocator

Spends 3% of the time in the kernel with one

core, 16% of the time with 48 cores

15

Kernel Optimizations

Many of the bottlenecks are common to

multiple applications

The solutions have not been implemented in

the standard kernel because the problems

are not serious on small-scale SMPs or are

masked by I/O delays

16

Quick intro to Linux file system

Superblock - The superblock is essentially file system metadata and

defines the file system type, size, status, and information about

other metadata structures (metadata of metadata)

Inode - An inode exists in a file system and represents metadata

about a file.

Dentry - A dentry is the glue that holds inodes and files together by

relating inode numbers to file names. Dentries also play a role in

directory caching which, ideally, keeps the most frequently used files

on-hand for faster access. File system traversal is another aspect of

the dentry as it maintains a relationship between directories and

their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

17

Common problems

The tasks may lock shared data structures, so

that increasing the number of cores increases

the lock wait time

The tasks may write a shared memory location,

so that increasing the number of cores increases

the time spent waiting for the cache coherence

protocol

18

Common problems - cont

The tasks may compete for space in a limited

size shared hardware cache, so that increasing

the number of cores increases the cache miss

rate

The tasks may compete for other shared

hardware resources such as DRAM interface

There may be too few tasks to keep all cores

busy

19

Cache related problems

Many scaling problems are delays caused by

cache misses when a core uses data that

other core have written

Sometimes cache coherence related

operation take about the same time as

loading data from off-chip RAM

The cache coherence protocol serializes

modifications to the same cache line

20

Multicore packet processing

The Linux network stack connects different stages of

packet processing with queues

A received packet typically passes through multiple queues

before arriving at per-socket queue

The performance would be better if each packet, queue

and connection be handled by just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network cards with

multiple hardware queues

21

Multicore packet processing (2)

Transmitting – place outgoing packets on the

hardware queue associated with the current

core

Receiving – configure the hardware to

enqueue incoming packets matching a

particular criteria (source ip and port) on a

specific queue

Sample outgoing packets and update hardware’s

flow directing tables to deliver incoming packets

from that connection directly to the core

22

Sloppy counters – The problem

Linux uses shared counters for reference

counting and to manage various resources

Lock-free atomic inc and dec do not help

because of cache coherence

23

Sloppy counter – The solution

Each core holds a few spare references to an

object

It gives ownership of these references to threads

running on that core when needed, without having

to modify the global reference count

24

Sloppy counter - cont

Core increments the sloppy counter by 𝑉:

1. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑉
I. Get 𝑉 references and decrement 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 by 𝑉 and finish

2. Otherwise, acquire 𝑉 references from the central

counter and increment the central counter by 𝑉

Core decrements the sloppy counter by 𝑉:

1. Release 𝑉 references for local use and decrement the

local counter by 𝑉

2. If 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 release spare references

by decrementing local count and central count

25

Sloppy counter - cont

Invariant:

σ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠+number of used resources =

shared counter

26

Sloppy counter - use

These counters are used for counting

references to:

dentrys

vfsmounts

dst_entrys

track amount of memory allocated by each

network protocol (such as TCP and UDP)

27

Lock-free comparison

There are situations where there are

bottlenecks because of low scalability of

name lookups in the dentry cache

The dentry cache speed ups lookup by mapping a

directory and a file name to a dentry identifying

the matching inode

When a potential dentry is located, the lookup

code acquires a per-dentry spin lock to atomically

compare fields of the dentry with the arguments

28

Lock-free comparison - cont

The search can be made lock-free

Use generation counter which is incremented

after every modification. During modification

temporarily set the generation counter to 0.

Comparison algorithm:

29

Per core data structures

Kernel data structures that caused scaling

bottlenecks:

Per super-block list of open files

Table of mount points

Pool of free packet buffers

30

False sharing

Some applications caused false sharing in

the kernel

 A variable the kernel updated often was

located on the same cache

 line as a variable it read often

31

Evaluation

32

Technical details

The experiments were made on a 48 core

machine

Tyan Thunder S4985 board

8*(2.4 GHz 6-core AMD Opteron 8431 chips)

Each core has 64Kb L1 cache and 512Kb L2

cache

The cores on each chip share 6Mb L3 cache

Each chip has 8Gb of local off-chip DRAM

33

Exim

34

Exim - modifications

Berkeley DB reads /proc/stat to find number

of cores

Modification: Cache this information aggressively

Split incoming queues messages across 62

spool directories, hashing by per connection

pid

35

memcached

36

memcached - modifications

False read/write sharing of IXGBE device

driver data in the net_device and device

structures

Modification: rearrange structures to isolate

critical read-only members to their own cache

lines

Contention on dst_entry structure’s reference

count in the network stack’s destination

cache

Modification: use sloppy counter

37

Apache

38

PostgreSQL

39

PostgreSQL - cont

40

gmake

41

Psearchy/pedsort

42

Metis

43

Summary of Linux scalability

problems

44

Summary of Linux scalability

problems - cont

45

Summary of Linux scalability

problems - cont

46

Summary of Linux scalability

problems - cont

47

Summary of Bottlenecks

48

Summary

Most applications can scale well to many

cores with modest modifications to the

applications and to the kernel

More bottlenecks are expected to be

revealed when running on more cores

49

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: What are we going to talk about?
	Slide 3: Amdahl’s law
	Slide 4: Introduction
	Slide 5: Why Linux? Why these applications?
	Slide 6: How can we decide if Linux is scalable?
	Slide 7: Kind of problems
	Slide 8: The Applications
	Slide 9: Exim
	Slide 10: memcached – Object cache
	Slide 11: Apache – Web server
	Slide 12: PostgreSQL
	Slide 13: gmake
	Slide 14: Psearchy – File indexer
	Slide 15: Metis - MapReduce
	Slide 16: Kernel Optimizations
	Slide 17: Quick intro to Linux file system
	Slide 18: Common problems
	Slide 19: Common problems - cont
	Slide 20: Cache related problems
	Slide 21: Multicore packet processing
	Slide 22: Multicore packet processing (2)
	Slide 23: Sloppy counters – The problem
	Slide 24: Sloppy counter – The solution
	Slide 25: Sloppy counter - cont
	Slide 26: Sloppy counter - cont
	Slide 27: Sloppy counter - use
	Slide 28: Lock-free comparison
	Slide 29: Lock-free comparison - cont
	Slide 30: Per core data structures
	Slide 31: False sharing
	Slide 32: Evaluation
	Slide 33: Technical details
	Slide 34: Exim
	Slide 35: Exim - modifications
	Slide 36: memcached
	Slide 37: memcached - modifications
	Slide 38: Apache
	Slide 39: PostgreSQL
	Slide 40: PostgreSQL - cont
	Slide 41: gmake
	Slide 42: Psearchy/pedsort
	Slide 43: Metis
	Slide 44: Summary of Linux scalability problems
	Slide 45: Summary of Linux scalability problems - cont
	Slide 46: Summary of Linux scalability problems - cont
	Slide 47: Summary of Linux scalability problems - cont
	Slide 48: Summary of Bottlenecks
	Slide 49: Summary

