W I% LIJNIVEETY OF CALIFORNIA

CS 202: Advanced Operating
Systems

Distributed Filesystems

Credit: Uses some slides by sehan-Francois
Paris, Mark Claypool and Jeff Chase

I% UNIVERSITY O§ALIFORNIA

DESIGN AND IMPLEMENTATION
OF THE SUN NETWORK
FILESYSTEM

R. Sandberg, D. Goldberg
S. Kleinman, D. Walsh, R. Lyon

Sun Microsystems

What is NFS?

Client 0

Client 1

Client 2 @@@@

Client 3

» First commercially successful network file system:
Developed by Sun Microsystems for their diskless workstations
Designed for robustness and “adequate performance”

Sun published all protocol specifications
Many many implementations

R

Overview and Objectives

Client Application

Client-side File System File Server <4— Disks

Networking Layer < »Networking Layer

» Fast and efficient crash recovery
Why do crashes occur?

> To accomplish this:
NFS is stateless — key design decision
All client requests must be self-contained

The virtual filesystem interface

VFS operations
VNODE operations

R

Additional objectives K

> Machine and Operating System Independence
Could be implemented on low-end machines of the mid-80’s

> Transparent Access

Remote files should be accessed in exactly the same way as
local files

> UNIX semantics should be maintained on client
Best way to achieve transparent access
> “Reasonable” performance

Robustness and preservation of UNIX semantics were much
more important

Example

char buffer [MAX];
int fd = open("foco", O_RDONLY); //

read (fd, buffer, MAX); !/
read(fd, buffer, MAX); !/
read (fd, buffer, MAX); [/
close (fd); /Y

> What if the client simply passes the open request to the server?

Server has state
Crash causes big problems

> Three important parts
The protocol

The server side
The client side

get descriptor
read MAX bytes
read MAX bvytes

read MAX bytes
close file

" fd m
from
from

from

(via fd)

The protocol ()

>

Uses the Sun RPC mechanism and Sun eXternal
Data Representation (XDR) standard

Defined as a set of remote procedures

Protocol Is stateless

Each procedure call contains all the information necessary to
complete the call

Server maintains no “between call” information

Advantages of statelessness K

» Crash recovery Is very easy:

When a server crashes, client just resends request until
it gets an answer from the rebooted server

Client cannot tell difference between a server that has
crashed and recovered and a slow server

»> Client can always repeat any request

NFS as a “Stateless” Service R

> A classical NFS server maintains no in-memory

hard state.
The only hard state is the stable file system image on disk.

no record of clients or open files

no implicit arguments to requests

E.g., no server-maintained file offsets: read and write requests
must explicitly transmit the byte offset for each operation.

no write-back caching on the server
no record of recently processed requests
etc., etc....

» Statelessness makes failure recovery simple
and efficient.

Consequences of statelessness!/CR

» Read and writes must specify their start offset

Server does not keep track of current position in
the file

User still use conventional UNIX reads and writes

» Open system call translates into several
lookup calls to server

> No NFS equivalent to UNIX close system call

Important pieces of protocol

NFSPROC_GETATTR
expects: file handle
returns: attributes
NFSPROC_SETATTR
expects: file handle, attributes
returns: nothing
NFSPROC_LOCKUP
expects: directory file handle, name of file/directory to look up
returns: file handle
NFSPROC_READ
expects: file handle, offset, count
returns: data, attributes
NFSPROC_WRITE
expects: file handle, offset, count, data
returns: attributes
NFSPROC_CREATE
expects: directory file handle, name of file, attributes
returns: nothing
NFSPROC_REMOVE
expects: directory file handle, name of file to be removed
returns: nothing
NFSPROC_MEDIR
expects: directory file handle, name of directory, attributes
returns: file handle
NFSPROC_RMDIR
expects: directory file handle, name of directory to be removed
returns: nothing
NFSPROC_READDIR
expects: directory handle, count of bytes to read, cookie
returns: directory entries, coockie (to get more entries)

From protocol to distributed file system

» Client side translates user requests to protocol
messages to implement the request remotely

» Example:

Client Server

fd = open(”/fo0”, ...);
Send LOOKUP (rootdir FH, “foo”)

Receive LOOKUP request
look for “foo” in root dir
return foo’s FH + attributes

Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application

R

The lookup call (l)

> Returns a file handle instead of a file descriptor

File handle specifies unique location of file
Volume identifier, inode number and generation number

> lookup(dirfh, name) returns (fh, attr)

Returns file handle fh and attributes of named file in directory
dirfh
Fails if client has no right to access directory dirfh

R

The lookup call (ll)

One single open call such as
fd = open(“/usr/joe/6360/list.txt”)

will be result in several calls to lookup

lookup(rootfh, “usr”) returns (fh0, attr)
lookup(fh0, “joe”) returns (fh1, attr)
lookup(fh1, “6360”) returns (fh2, attr)
lookup(fh2, “list.txt”) returns (fh, attr)

> Why all these steps?

Any of components of /usr/joe/6360/list.txt
could be a mount point

Mount points are client dependent and mount information is kept above the
lookup() level

R

Server side (1)

> Server implements a write-through policy

Required by statelessness

Any blocks modified by a write request (including
I-nodes and indirect blocks) must be written back
to disk before the call completes

R

Server side (ll)

> File handle consists of
~llesystem id identifying disk partition
-node number identifying file within partition

Generation number changed every time
I-node Is reused to store a new file

> Server will store
Filesystem id in filesystem superblock
I-node generation number in i-node

R

Client side (l)

> Provides transparent interface to NFS

> Mapping between remote file names and remote file
addresses is done a server boot time through remote
mount
Extension of UNIX mounts
Specified in a mount table
Makes a remote subtree appear part of a local subtree

R

Remote mount

Client tree

bin

/

usr

After rmount, root of server subtree
can be accessed as /usr

Server subtree

/N

R

Client side (ll)

» Provides transparent access to

NFS
Other file systems (including UNIX FFS)

> New virtual filesystem interface supports
VFS calls, which operate on whole file system
VNODE calls, which operate on individual files

» Treats all files in the same fashion

R

Client side (Ill)

\

User interface is

UNIX system calls

unchanged

Other FS

LAN <«

Common interface

| ™~

UNIX FS

& -

More examples

read(fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset
Send READ (FH, offset=0, count=MAX)
Receive READ request
use FH to get volume/inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client
Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app

Continued

read(fd, buffer, MAX);
Same except offset=MAX and set current file position = 2*MAX

read(fd, buffer, MAX);
Same except offset=2*MAX and set current file position = 3*MAX

close(fd);
Just need to clean up local structures

Free descriptor “fd” in open file table
(No need to talk to server)

Handling server Failures R

» Failure types:

Case 1: Request Lost

Client Server
[send request]

(no mesg)

Case 2: Server Down

Client Server
[send request]

— X (down)

Case 3: Reply lost on way back from Server

Client Server
[send request]

—» [recv request]
[handle request]
[send reply]

X4

Figure 48.6: The Three Types of Loss

ldempotency

> A client handles all these failures by simply
retrying the request

> Why can this approach work? These
operations are idempotent:

performing an operation multiple times is
equivalent to performing it one time

> Lookup, read, write are obviously idempotent

> What about delete, mkdir, exclusive create,
append-mode write?

24

R

Client-side Caching

» Can greatly improve the performance
» But what about cache consistency?

C1 Cc2 C3
cache: F[v1] cache: F[v2] cache: empty

Figure 49.7: The Cache Consistency Problem

» Solution:
flush-on-close (a.k.a, close-to-open)
GETATTR (with an attribute cache)
What do we sacrifice?

25

Discussion

>

>

>

>

>

Throughput
Latency
Scalability
Crash Recovery
Fault Tolerance

26

R

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: DESIGN AND IMPLEMENTATION OF THE SUN NETWORK FILESYSTEM
	Slide 3: What is NFS?
	Slide 4: Overview and Objectives
	Slide 5: Additional objectives
	Slide 6: Example
	Slide 7: The protocol (I)
	Slide 8: Advantages of statelessness
	Slide 9: NFS as a “Stateless” Service
	Slide 10: Consequences of statelessness
	Slide 11: Important pieces of protocol
	Slide 12: From protocol to distributed file system
	Slide 13: The lookup call (I)
	Slide 14: The lookup call (II)
	Slide 15: Server side (I)
	Slide 16: Server side (II)
	Slide 17: Client side (I)
	Slide 18: Remote mount
	Slide 19: Client side (II)
	Slide 20: Client side (III)
	Slide 21: More examples
	Slide 22: Continued
	Slide 23: Handling server Failures
	Slide 24: Idempotency
	Slide 25: Client-side Caching
	Slide 26: Discussion

