
CS 202 Advanced

Operating System

Process

1

OS Abstractions

2

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

Today, we start discussing the first abstraction that enables us to virtualize

 (i.e., share) the CPU – processes!

3

The Process
The process is the OS abstraction for execution

It is the unit of execution

It is the unit of scheduling

A process is a program in execution

Programs are static entities with the potential for

execution

Process is the animated/active program
Starts from the program, but also includes dynamic state

As the representative of the program, it is the “owner” of other resources

(memory, files, sockets, …)

How does the OS implement this abstraction?
How does it share the CPU?

4

Process Components
A process contains all the state for a program in

execution

An address space containing
Static memory:

The code and input data for the executing program

Dynamic memory:

The memory allocated by the executing program

An execution stack encapsulating the state of procedure calls

Control registers such as the program counter (PC)

A set of general-purpose registers with current values

A set of operating system resources

Open files, network connections, etc.

A process is named using its process ID (PID)

5

Address Space (memory abstraction)

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

Static

Dynamic

6

Process Execution State
A process is born, executes for a while, and

then dies

The process execution state that indicates what

it is currently doing

Running: Executing instructions on the CPU
It is the process that has control of the CPU

How many processes can be in the running state simultaneously?

Ready: Waiting to be assigned to the CPU
Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/O completion
It cannot make progress until event is signaled (disk completes)

Execution state (cont’d)

As a process executes, it moves from state to

state

Unix “ps -x”: STAT column indicates execution

state

What state do you think a process is in most of

the time?

How many processes can a system support?

7

8

Execution State Graph

New Ready

Running

Waiting

Terminated

Create

Process

Process

Exit

I/O, Page

Fault, etc.

I/O Done

Schedule

Process

Unschedule

Process

9

How does the OS support this model?

We will discuss three issues:

1. How does the OS represent a process in the kernel?

The OS data structure representing each process is called the

Process Control Block (PCB)

2. How do we pause and restart processes?

We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the

system?

 A lot of queues!

10

PCB Data Structure

PCB also is where OS keeps all of a process’ hardware

execution state when the process is not running
Process ID (PID)

Execution state

Hardware state: PC, SP, regs

Memory management

Scheduling

Accounting

Pointers for state queues

Etc.

This state is everything that is needed to restore the

hardware to the same configuration it was in when the

process was switched out of the hardware

Xv6 struct proc

11

12

How to pause/restart processes?

When a process is running, its dynamic state is in memory and some

hardware registers

Hardware registers include Program counter, stack pointer, control registers, data

registers, …

To be able to stop and restart a process, we need to completely restore this state

When the OS stops running a process, it saves the current values of the

registers (usually in PCB)

When the OS restarts executing a process, it loads the hardware

registers from the stored values in PCB

Changing CPU hardware state from one process to another is called a

context switch

This can happen 100s or 1000s of times a second!

13

How does the OS track processes?

The OS maintains a collection of queues that represent

the state of all processes in the system

Typically, the OS at least one queue for each state

Ready, waiting, etc.

Each PCB is queued on a state queue according to its

current state

As a process changes state, its PCB is unlinked from

one queue and linked into another

14

State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues,

one for each type of wait (disk,

console, timer, network, etc.)

Process system call API

Process creation: how to create a new process?

Process termination: how to terminate and clean up a

process

Coordination between processes

Wait, waitpid, signal, inter-process communication,

synchronization

Other

E.g., set quotas or priorities, examine usage, …

15

16

Process Creation

A process is created by another process

Why is this the case?

Parent is creator, child is created (Unix: ps “PPID” field)

What creates the first process (Unix: init (PID 0 or 1))?

In some systems, the parent defines (or donates)

resources and privileges for its children

Unix: Process User ID is inherited – children of your shell

execute with your privileges

After creating a child, the parent may either wait for it to

finish its task or continue in parallel (or both)

17

Process Creation: Windows

The system call on Windows for creating a process is

called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess

Creates and initializes a new PCB

Creates and initializes a new address space

Loads the program specified by “prog” into the address space

Copies “args” into memory allocated in address space

Initializes the saved hardware context to start execution at main

(or wherever specified in the file)

Places the PCB on the ready queue

18

Process Creation: Unix

In Unix, processes are created using fork()
int fork()

fork()
Creates and initializes a new PCB

Creates a new address space

Initializes the address space with a copy of the entire contents
of the address space of the parent

Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

Places the PCB on the ready queue

Fork returns twice
Returns the child’s PID to the parent, “0” to the child

19

fork()

int main(int argc, char *argv[])

{

 char *name = argv[0];

 int child_pid = fork();

 if (child_pid == 0) {

 printf(“Child of %s is %d\n”, name, getpid());

 return 0;

 } else {

 printf(“My child is %d\n”, child_pid);

 return 0;

 }

}

What does this program print?

20

Example Output

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

21

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

22

Divergence

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0

23

Example Continued

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

[well ~]$./a.out

Child of a.out is 498

My child is 498

Why is the output in a different order?

24

Why fork()?

Very useful when the child…

Is cooperating with the parent

Relies upon the parent’s data to accomplish its

task

Example: Web server
while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 } else {

 Close socket

 }

}

25

Process Creation: Unix (2)

Wait a second. How do we actually start a new

program?
int exec(char *prog, char *argv[])

exec()

Stops the current process

Loads the program “prog” into the process’ address space

Initializes hardware context and args for the new program

Places the PCB onto the ready queue

Note: It does not create a new process

What does it mean for exec to return?

What does it mean for exec to return with an error?

26

Process Termination

All good processes must come to an end. But

how?

Unix: exit(int status), NT: ExitProcess(int status)

Essentially, free resources and terminate

Terminate all threads (next lecture)

Close open files, network connections

Allocated memory (and VM pages out on disk)

Remove PCB from kernel data structures, delete

Note that a process does not need to clean up

itself

OS will handle this on its behalf

27

wait() a second…

Often it is convenient to pause until a child process has

finished

Think of executing commands in a shell

Use wait() (WaitForSingleObject)

Suspends the current process until a child process ends

waitpid() suspends until the specified child process ends

Wait has a return value…what is it?

Unix: Every process must be reaped by a parent

What happens if a parent process exits before a child?

What do you think is a “zombie” process?

28

Unix Shells

while (1) {

 char *cmd = read_command();

 int child_pid = fork();

 if (child_pid == 0) {

 Manipulate STDIN/OUT/ERR file descriptors for pipes,

redirection, etc.

 exec(cmd);

 panic(“exec failed”);

 } else {

 if (!(run_in_background))

 waitpid(child_pid);

 }

}

	Slide 1: CS 202 Advanced Operating System
	Slide 2: OS Abstractions
	Slide 3: The Process
	Slide 4: Process Components
	Slide 5: Address Space (memory abstraction)
	Slide 6: Process Execution State
	Slide 7: Execution state (cont’d)
	Slide 8: Execution State Graph
	Slide 9: How does the OS support this model?
	Slide 10: PCB Data Structure
	Slide 11: Xv6 struct proc
	Slide 12: How to pause/restart processes?
	Slide 13: How does the OS track processes?
	Slide 14: State Queues
	Slide 15: Process system call API
	Slide 16: Process Creation
	Slide 17: Process Creation: Windows
	Slide 18: Process Creation: Unix
	Slide 19: fork()
	Slide 20: Example Output
	Slide 21: Duplicating Address Spaces
	Slide 22: Divergence
	Slide 23: Example Continued
	Slide 24: Why fork()?
	Slide 25: Process Creation: Unix (2)
	Slide 26: Process Termination
	Slide 27: wait() a second…
	Slide 28: Unix Shells

