
CS 202

Advanced Operating

Systems

Thread

Processes

Recall that …

A process includes:
An address space (defining all the code and data pages)

OS resources (e.g., open files) and accounting info

Execution state (PC, SP, regs, etc.)

PCB to keep track of everything

Processes are completely isolated from each
other

But…
2

P1 P2

OS

Some issues with processes

Creating a new process is costly because of new
address space and data structures that must be
allocated and initialized

Recall struct proc in xv6

Communicating between processes is costly
because most communication goes through the
OS

Inter Process Communication (IPC) – we will discuss
later

Overhead of system calls and copying data

3

Parallel Programs
Also recall our Web server example
while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 } else {

 Close socket

 }

}

To execute these programs we need to

Create several processes that execute in parallel

Cause each to map to the same address space to share data

They are all part of the same computation

Have the OS schedule these processes in parallel

This situation is very inefficient

Space: PCB, page tables, etc.

Time: create data structures, fork and copy addr space, etc.

4

Rethinking Processes

What is similar in these cooperating processes?

They all share the same code and data (address space)

They all share the same privileges

They all share the same resources (files, sockets, etc.)

What don’t they share?

Each has its own execution state: PC, SP, and registers

Key idea: Separate resources from execution state

Exec state also called thread of control, or thread

5

Recap: Process Components

A process is named using its process ID (PID)

A process contains all the state for a program in

execution

An address space

The code for the executing program

The data for the executing program

A set of operating system resources

Open files, network connections, etc.

An execution stack encapsulating the state of procedure calls

The program counter (PC) indicating the next instruction

A set of general-purpose registers with current values

Current execution state (Ready/Running/Waiting)

6

Per-

Process

State

Per-

Thread

State

Threads

Separate execution and resource container roles

u The thread defines a sequential execution stream

within a process (PC, SP, registers)

u The process defines the address space, resources,

and general process attributes (everything but

threads)

Threads become the unit of scheduling

u Processes are now the containers in which threads

execute

u Processes become static, threads are the dynamic

entities

7

Recap: Process Address Space

8

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

Threads in a Process

9

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread Design Space

10

One Thread/Process
Many Address Spaces (Early

Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces (Mac

OS, Unix, Windows)

Many Threads/Process
One Address Space (Pilot,

Java)

Address Space

Thread

Process/Thread Separation

Separating threads and processes makes it

easier to support multithreaded applications

Concurrency does not require creating new processes

 Concurrency (multithreading) can be very useful

Improving program structure

Handling concurrent events (e.g., Web requests)

Writing parallel programs

So multithreading is even useful on a

uniprocessor
11

Threads: Concurrent Servers

Using fork() to create new processes to

handle requests in parallel is overkill for such

a simple task

Recall our forking Web server:

while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 Close socket and exit

 } else {

 Close socket

 }

}

12

Threads: Concurrent Servers

Instead, we can create a new thread for each

request

 web_server() {

 while (1) {

 int sock = accept();

 thread_fork(handle_request, sock);

 }

 }

 handle_request(int sock) {

 Process request

 close(sock);

 }

13

Thread Implementations

User-level thread

Kernel-level thread

14

User-Level Threads

Managed entirely by a user-level thread library

Creation, scheduling, etc.

No kernel intervention

ULTs are small and fast

A thread is represented by a PC, registers, stack, and small

thread control block (TCB)

Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

No kernel involvement

User-level thread operations 100x faster than kernel threads

pthreads: PTHREAD_SCOPE_PROCESS (not available in

Linux)

15

Context switching user-level threads

The thread library

switches threads within

process

OS kernel manages

context switch across

processes

16

Kernel

User-level Thread Limitations

What happens if a thread invokes a syscall?

A blocking syscall blocks the whole process!

User-level threads are invisible to the OS

They are not well integrated with the OS

As a result, the OS can make poor decisions

Scheduling a process with idle threads

Blocking a process, in which the current thread

initiates an I/O, while many other threads are ready

Unscheduling a process with a thread holing a lock

17

Kernel-Level Thread Implementation

OS kernel manages threads and processes

All thread operations are implemented in the kernel

The OS schedules all the threads in the system

Process is no longer a unit for scheduling!

OS-managed threads are called kernel-level

threads or lightweight processes

u Windows: threads

u Solaris: lightweight processes (LWP)

u POSIX Threads (pthreads):

PTHREAD_SCOPE_SYSTEM

18

Kernel-Level Thread Implementation

Each user thread maps to

a kernel thread

Slow to create and

manipulate

Must go through syscalls

Integrated with OS well

A blocking syscall will not

block the whole process

19

Kernel

TCB TCB TCB TCB

Summary KLT vs. ULT

Kernel-level threads

Integrated with OS (informed scheduling)

Slow to create, manipulate, synchronize

User-level threads

Fast to create, manipulate, synchronize

Not integrated with OS (uninformed scheduling)

Understanding the differences between

kernel and user-level threads is important

For programming (correctness, performance)

For test-taking ☺

20

21

Sample Thread Interface

pthread_create(pthread_t *thread, pthread_attr_t

*attr, void *(*start_routine)(void*), void *arg);

Create a new thread

pthread_exit(void *status);

Terminate the calling thread

pthread_join(pthread_t thread, void **value_ptr);

Wait for a thread to complete

pthread_yield()

Voluntarily give up the processor

An example

22

23

Non-Preemptive Scheduling

Threads voluntarily give up the CPU with

pthread_yield

What is the output of running these two threads?

while (1) {

 printf(“ping\n”);

 pthread_yield();

}

while (1) {

 printf(“pong\n”);

 pthread_yield();

}

Ping Thread Pong Thread

pthread_yield()

The semantics of pthread_yield are that it gives

up the CPU to another thread

In other words, it context switches to another thread

So what does it mean for pthread_yield to

return?

Execution trace of ping/pong
printf(“ping\n”);

thread_yield();

printf(“pong\n”);

thread_yield();

…

24

An illustrative Implementation of

pthread_yield()

pthread_yield() {

 thread_t old_thread = current_thread;

 current_thread = get_next_thread();

 append_to_queue(ready_queue, old_thread);

 context_switch(old_thread, current_thread);

 return;

}

The magic step is invoking context_switch()

Why do we need to call append_to_queue()?

25

As old thread

As new thread

26

Thread Context Switch

The context switch routine does all the magic

Saves context of the currently running thread (old_thread)

Push all machine state onto its stack (not its TCB)

Restores context of the next thread

Pop all machine state from the next thread’s stack

The next thread becomes the current thread

Return to caller as new thread

This is all done in assembly language

It works at the level of the procedure calling convention, so it

cannot be implemented using procedure calls

Preemptive Scheduling

Non-preemptive threads must voluntarily give up CPU

A long-running thread will take over the machine

Only voluntary calls to pthread_yield(), pthread_join(), or

thread_exit() causes a context switch

Preemptive scheduling causes an involuntary context

switch

Need to regain control of processor asynchronously

Use timer interrupt (How do you do this?)

Timer interrupt handler forces current thread to “call”

thread_yield

27

Threads Summary

Processes are too heavyweight for multiprocessing

Time and space overhead

Solution is to separate threads from processes

Kernel-level threads much better, but still significant overhead

User-level threads even better, but not well integrated with OS

Scheduling of threads can be either preemptive or non-

preemptive

Now, how do we get our threads to correctly cooperate

with each other?

Synchronization…

28

	Slide 1: CS 202 Advanced Operating Systems
	Slide 2: Processes
	Slide 3: Some issues with processes
	Slide 4: Parallel Programs
	Slide 5: Rethinking Processes
	Slide 6: Recap: Process Components
	Slide 7: Threads
	Slide 8: Recap: Process Address Space
	Slide 9: Threads in a Process
	Slide 10: Thread Design Space
	Slide 11: Process/Thread Separation
	Slide 12: Threads: Concurrent Servers
	Slide 13: Threads: Concurrent Servers
	Slide 14: Thread Implementations
	Slide 15: User-Level Threads
	Slide 16: Context switching user-level threads
	Slide 17: User-level Thread Limitations
	Slide 18: Kernel-Level Thread Implementation
	Slide 19: Kernel-Level Thread Implementation
	Slide 20: Summary KLT vs. ULT
	Slide 21: Sample Thread Interface
	Slide 22: An example
	Slide 23: Non-Preemptive Scheduling
	Slide 24: pthread_yield()
	Slide 25: An illustrative Implementation of pthread_yield()
	Slide 26: Thread Context Switch
	Slide 27: Preemptive Scheduling
	Slide 28: Threads Summary

