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The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds. 
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Locality to the Rescue! 

The key to bridging this CPU-Memory gap is a 

fundamental property of computer programs 

known as locality
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Locality

Principle of Locality: Programs tend to use data 

and instructions with addresses near or equal to 

those they have used recently

Temporal locality:  

Recently referenced items are likely 

to be referenced again in the near future

Spatial locality:  

Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

Data references

Reference array elements in 

succession (stride-1 reference pattern).

Reference variable sum each iteration.

Instruction references

Reference instructions in sequence.

Cycle through loop repeatedly. 

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality
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An Example Memory Hierarchy
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Memory hierarchy

Cache: A smaller, faster storage device that acts as a staging area for 

a subset of the data in a larger, slower device.

Fundamental idea of a memory hierarchy:

u For each layer, faster, smaller device caches larger, slower device 

.

Why do memory hierarchies work?

u Because of locality! 

 Hit fast memory much more frequently even though its smaller

u Thus, the storage at level k+1 can be slower (but larger and cheaper!)

Big Idea:  The memory hierarchy creates a large pool of storage that 

costs as much as the cheap storage near the bottom, but that serves 

data to programs at the rate of the fast storage near the top.

8



Virtual Addresses

Many ways to do this translation…
Need hardware support and OS management algorithms 

Requirements

Need protection – restrict which addresses jobs can use

Fast translation – lookups need to be fast

Fast change – updating memory hardware on context switch
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Paging

New Idea: split virtual address space into 

multiple partitions

Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by 

using fixed sized units in both physical and virtual memory But need to keep track 

of where things are!
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Process Perspective

Processes view memory as one contiguous 

address space from 0 through N

Virtual address space (VAS)

In reality, pages are scattered throughout 

physical storage

The mapping is invisible to the program

Protection is provided because a program 

cannot reference memory outside of its VAS

The address “0x1000” maps to different physical 

addresses in different processes
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Paging

Translating addresses

Virtual address has two parts: virtual page number and offset

Virtual page number (VPN) is an index into a page table

Page table determines page frame number (PFN)

Physical address is PFN::offset

Page tables

Map virtual page number (VPN) to page frame number (PFN)

VPN is the index into the table that determines PFN

One page table entry (PTE) per page in virtual address space

Or, one PTE per VPN
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VM as a Tool for Caching

Virtual memory is an array of N contiguous bytes 

stored on disk. 

The contents of the array on disk are cached in 

physical memory (DRAM cache)

These cache blocks are called pages (size is P = 2p bytes)
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DRAM Cache Organization

DRAM cache organization driven by the enormous miss 

penalty

DRAM is about 10x slower than SRAM

Disk is about 10,000x slower than DRAM

Consequences

Large page (block) size: typically 4-8 KB, sometimes 4 MB

Fully associative 

Any VP can be placed in any PP

Requires a “large” mapping function – different from CPU caches

Highly sophisticated, expensive replacement algorithms

Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through



Page Tables

A page table is an array of page table entries (PTEs) that maps 

virtual pages to physical pages. 

Per-process kernel data structure in DRAM
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Page Hit

Page hit: reference to VM word that is in physical memory (DRAM 

cache hit)
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Page Fault

Page fault: reference to VM word that is not in physical memory 

(DRAM cache miss)
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Handling Page Fault

Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or 

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

Offending instruction is restarted: page hit!
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Locality to the Rescue!

Virtual memory works because of locality

At any point in time, programs tend to access a set of 
active virtual pages called the working set

Programs with better temporal locality will have smaller working 
sets

If (working set size < main memory size) 
Good performance for one process after compulsory misses

If ( SUM(working set sizes) > main memory size ) 
Thrashing: Performance meltdown where pages are swapped 
(copied) in and out continuously



VM as a Tool for Mem Management

Key idea: each process has its own virtual address space

It can view memory as a simple linear array

Mapping function scatters addresses through physical memory

Well chosen mappings simplify memory allocation and management
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VM as a Tool for Mem Management

Memory allocation

Each virtual page can be mapped to any physical page

A virtual page can be stored in different physical pages at different times

Sharing code and data among processes

Map virtual pages to the same physical page (here: PP 6)
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Copy on Write

OSes spend a lot of time copying data

System call arguments between user/kernel space

Entire address spaces to implement fork()

Use Copy on Write (CoW) to defer large copies as long 

as possible, hoping to avoid them altogether

Instead of copying pages, create shared mappings of parent 

pages in child virtual address space

Shared pages are protected as read-only in parent and child

Reads happen as usual

Writes generate a protection fault, trap to OS, copy page, change 

page mapping in client page table, restart write instruction

How does this help fork()?  



Execution of fork()

Page 1

Physical Memory

Page 2

Parent process’s 

page table

Page 1
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fork() with Copy on Write

Page 1

Physical Memory

Page 2

Parent process’s 

page table

Page 1

Child process’s 

page table

Page 2

Protection bits set to prevent either 

process from writing to any page

When either process modifies Page 1, 

page fault handler allocates new page 

and updates PTE in child process 



Simplifying Linking and Loading

Linking 

Each program has similar virtual address 

space

Code, stack, and shared libraries always 

start at the same address

Loading 

execve() allocates virtual pages for 

.text and .data sections 
= creates PTEs marked as invalid

The .text and .data sections are 

copied, page by page, on demand by the 

virtual memory system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp 
(stack 
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file



VM as a Tool for Mem Protection

Extend PTEs with permission bits

Page fault handler checks these before remapping
If violated, send process SIGSEGV (segmentation fault)
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Integrating VM and Cache
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VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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