
CS 202 Advanced

Operating Systems

Virtual Memory

OS Abstractions

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

2

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

n
s

Year

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Disk

DRAM

CPU

SSD

3

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a

fundamental property of computer programs

known as locality

4

Locality

Principle of Locality: Programs tend to use data

and instructions with addresses near or equal to

those they have used recently

Temporal locality:

Recently referenced items are likely

to be referenced again in the near future

Spatial locality:

Items with nearby addresses tend

to be referenced close together in time

5

Locality Example

Data references

Reference array elements in

succession (stride-1 reference pattern).

Reference variable sum each iteration.

Instruction references

Reference instructions in sequence.

Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

6

An Example Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files retrieved
from disks on remote network
servers

Main memory holds disk blocks retrieved
from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

7

Memory hierarchy

Cache: A smaller, faster storage device that acts as a staging area for

a subset of the data in a larger, slower device.

Fundamental idea of a memory hierarchy:

u For each layer, faster, smaller device caches larger, slower device

.

Why do memory hierarchies work?

u Because of locality!

 Hit fast memory much more frequently even though its smaller

u Thus, the storage at level k+1 can be slower (but larger and cheaper!)

Big Idea: The memory hierarchy creates a large pool of storage that

costs as much as the cheap storage near the bottom, but that serves

data to programs at the rate of the fast storage near the top.

8

Virtual Addresses

Many ways to do this translation…
Need hardware support and OS management algorithms

Requirements

Need protection – restrict which addresses jobs can use

Fast translation – lookups need to be fast

Fast change – updating memory hardware on context switch

9

vmapprocessor
physical

memory

virtual

addresses

physical

addresses

10

Paging

New Idea: split virtual address space into

multiple partitions

Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by

using fixed sized units in both physical and virtual memory But need to keep track

of where things are!

11

Process Perspective

Processes view memory as one contiguous

address space from 0 through N

Virtual address space (VAS)

In reality, pages are scattered throughout

physical storage

The mapping is invisible to the program

Protection is provided because a program

cannot reference memory outside of its VAS

The address “0x1000” maps to different physical

addresses in different processes

12

Paging

Translating addresses

Virtual address has two parts: virtual page number and offset

Virtual page number (VPN) is an index into a page table

Page table determines page frame number (PFN)

Physical address is PFN::offset

Page tables

Map virtual page number (VPN) to page frame number (PFN)

VPN is the index into the table that determines PFN

One page table entry (PTE) per page in virtual address space

Or, one PTE per VPN

13

Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

VM as a Tool for Caching

Virtual memory is an array of N contiguous bytes

stored on disk.

The contents of the array on disk are cached in

physical memory (DRAM cache)

These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

DRAM Cache Organization

DRAM cache organization driven by the enormous miss

penalty

DRAM is about 10x slower than SRAM

Disk is about 10,000x slower than DRAM

Consequences

Large page (block) size: typically 4-8 KB, sometimes 4 MB

Fully associative

Any VP can be placed in any PP

Requires a “large” mapping function – different from CPU caches

Highly sophisticated, expensive replacement algorithms

Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

Page Tables

A page table is an array of page table entries (PTEs) that maps

virtual pages to physical pages.

Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM

cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Page Fault

Page fault: reference to VM word that is not in physical memory

(DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0

VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 3

Virtual memory
(disk)

Valid

0

1

1

0

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0

VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 3

Virtual memory
(disk)

Valid

0

1

1

0

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0

VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Locality to the Rescue!

Virtual memory works because of locality

At any point in time, programs tend to access a set of
active virtual pages called the working set

Programs with better temporal locality will have smaller working
sets

If (working set size < main memory size)
Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)
Thrashing: Performance meltdown where pages are swapped
(copied) in and out continuously

VM as a Tool for Mem Management

Key idea: each process has its own virtual address space

It can view memory as a simple linear array

Mapping function scatters addresses through physical memory

Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

VM as a Tool for Mem Management

Memory allocation

Each virtual page can be mapped to any physical page

A virtual page can be stored in different physical pages at different times

Sharing code and data among processes

Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Copy on Write

OSes spend a lot of time copying data

System call arguments between user/kernel space

Entire address spaces to implement fork()

Use Copy on Write (CoW) to defer large copies as long

as possible, hoping to avoid them altogether

Instead of copying pages, create shared mappings of parent

pages in child virtual address space

Shared pages are protected as read-only in parent and child

Reads happen as usual

Writes generate a protection fault, trap to OS, copy page, change

page mapping in client page table, restart write instruction

How does this help fork()?

Execution of fork()

Page 1

Physical Memory

Page 2

Parent process’s

page table

Page 1

Child process’s

page table

Page 2

fork() with Copy on Write

Page 1

Physical Memory

Page 2

Parent process’s

page table

Page 1

Child process’s

page table

Page 2

Protection bits set to prevent either

process from writing to any page

When either process modifies Page 1,

page fault handler allocates new page

and updates PTE in child process

Simplifying Linking and Loading

Linking

Each program has similar virtual address

space

Code, stack, and shared libraries always

start at the same address

Loading

execve() allocates virtual pages for

.text and .data sections
= creates PTEs marked as invalid

The .text and .data sections are

copied, page by page, on demand by the

virtual memory system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

VM as a Tool for Mem Protection

Extend PTEs with permission bits

Page fault handler checks these before remapping
If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA

miss

PTEA

hit

PA

hit

Data

PTE

L1

cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

	Slide 1: CS 202 Advanced Operating Systems
	Slide 2: OS Abstractions
	Slide 3: The CPU-Memory Gap
	Slide 4: Locality to the Rescue!
	Slide 5: Locality
	Slide 6: Locality Example
	Slide 7: An Example Memory Hierarchy
	Slide 8: Memory hierarchy
	Slide 9: Virtual Addresses
	Slide 10: Paging
	Slide 11: Process Perspective
	Slide 12: Paging
	Slide 13: Page Lookups
	Slide 14: VM as a Tool for Caching
	Slide 15: DRAM Cache Organization
	Slide 16: Page Tables
	Slide 17: Page Hit
	Slide 18: Page Fault
	Slide 19: Handling Page Fault
	Slide 20: Handling Page Fault
	Slide 21: Handling Page Fault
	Slide 22: Handling Page Fault
	Slide 23: Locality to the Rescue!
	Slide 24: VM as a Tool for Mem Management
	Slide 25: VM as a Tool for Mem Management
	Slide 26: Copy on Write
	Slide 27: Execution of fork()
	Slide 28: fork() with Copy on Write
	Slide 29: Simplifying Linking and Loading
	Slide 30: VM as a Tool for Mem Protection
	Slide 31: Integrating VM and Cache

