IIIIIIIIIIIIIIIIIIIIII

CS 202: Advanced Operating
Systems

Extensible Operating Systems

Extensibility

> What do we mean by extensibility?
Flexible to add new features/functionalities
Good efficiency
Good security

» Can you give a few examples?
Device drivers
Browser plugins/extensions

R

Existing Approaches

> Directly insert code modules
E.g., Loadable kernel module
Good efficiency
Bad security

> Put into a new process
E.g., User-mode driver (e.g., FUSE)

E.g., Microsoft puts browser plugin into a new
process

Good security
Bad efficiency (context switch/mode switch)

R

How expensive are border crossings? R

» Procedure call: save some general-purpose registers
and jump
» Mode switch:

Trap or call gate overhead
Nowadays syscall/sysreturn

Switch to kernel stack
Switch some segment registers

» Context switch?
Change address space
This could be expensive; flush TLB, ...

OS design models

> Library OS
» Monolithic Kernel
» Micro Kernel

R

OS as library (DOS-like) UCR

Hardware, managed by OS

Monolithic Kernel UCR

- —

What is the difference

Hardware, managed by OS

Micro-kernel UCR

T Meokema
IPC, Address

Spaces, ...

Hardware, managed by OS

Summary

» DOS-like structure:
good performance and extensibility
Bad protection

> Monolithic kernels:
Good performance and protection
Bad extensibility

> Microkernels
Very good protection
Good extensibility
Bad performance!

R

Existing Approaches (cont’ed) K

» Language Runtime
JavaScript for Browser
SPIN for OS
Good efficiency
Good security

» Software Fault Isolation (not required)
E.g., Google NativeClient

What should an extensible OS do?!/CR

» It should be thin, like a micro-kernel
Only mechanisms (or even less?)
no policies; they are defined by extensions

» Fast access to resources, like DOS
Eliminate border crossings

» Flexibility without sacrificing protection or
performance

> Basically, fast, protected and flexible

11

Spin Approach to extensibility

» Co-location of kernel and extension

Avoid border crossings
But what about protection?

> Language/compiler forced protection
Strongly typed language

Protection by compiler and run-time
Cannot cheat using pointers

Logical protection domains

No longer rely on hardware address spaces to enforce
protection — no boarder crossings

> Dynamic call binding for extensibility

12

R

Logical protection domains K

» Modula-3 safety and encapsulation mechanisms
Type safety, automatic storage management
Objects, threads, exceptions and generic interfaces
> Fine-grained protection of objects using
capabillities. An object can be:
Hardware resources (e.g., page frames)
Interfaces (e.g., page allocation module)
Collection of interfaces (e.g., full VM)

» Capabilities are language supported pointers

13

Logical protection domains -- mechanisms

» Create:
Initialize with obje

» Resolve:

Names are resolv
Once resolved, ¢

» Combine
To create an aggr

INTERFACE Domain;
TYPE T <: REFANY; (* Domain.T is opagque *)

PROCEDURE Create (coff:CoffFile.T) :T;
(* Returns a domain created from the specified object
file (‘‘coff’’ is a standard cbject file format). *)

PROCEDURE CreateFromModule () :T;

(* Create a domain containing interfaces defined by the
calling module. This function allows modules to
name and export themselwves at runtime. *)

PROCEDURE Resolve (source,target: T);
(* Resclve any undefined symbols in the target domain
against any exported symbols from the source.*)

PROCEDURE Combine(dl, d2: T):T;
(* Create a new aggregate domain that exports the
interfaces of the given domains. *)

END Domain.

> This is the key to spin — protection, extensibility and

performance

14

R

Protection Model (1) K

> All kernel resources are referenced by
capabillities [tickets]

> SPIN implements capabilities directly through
the use of pointers

> Compiler prevents pointers to be forged or
dereferenced in a way inconsistent with Its
type at compile time:

No run time overhead for using a pointer

Protection Model (I K

> A pointer can be passed to a user-level

application through an externalized
reference:

Index into a per-application table of safe
references to kernel data structures

> Protection domains define the set of names
accessible to a given execution context

IPC, Address
Spaces, ...

Hardware, managed by OS

17

Spin Mechanisms for Events K

» Spin extension model is based on events and handlers
Which provide for communication between the base and the
extensions

» Events are routed by the Spin Dispatcher to handlers

Handlers are typically extension code called as a procedure by
the dispatcher

One-to-one, one-to-many or many-to-one
All handlers registered to an event are invoked
Guards may be used to control which handler is used

18

Event example

Ping AM. || RPC || Video HTTP
ICMP.PktArrived UDP.PktArrived TCP.PktArrived
ICMP UDP TCP

IP.PktArrived
Event P
Handler
Event — — Ether.PktArrived ATM.PktArrived
Lance Fore
device driver device driver

Fi gure 5: This figureshows a protocol stack that routes incoming network
packets to application-specific endpoints within the kernel. Ovals represent
events raised to route control to handlers, which are represented by boxes.
Handlers implement the protocol corresponding to their label.

19

R

Default Core services in SPIN

INTERFACE PhysAddr;
TYPE T <: REFANY; (* PhysAddr.T is opagque *)
PROCEDURE Allocate (size: Size; attrib: Attrik): T;
(* Allocate some physical memory with

particular attributes. *)

PROCEDURE Deallocate (p: T):

PROCEDURE Reclaim(candidate: T): T;

(* Request to reclaim a candidate page.
Clients may handle this event to
nominate alternative candidates. *)

END PhysAddr.

INTERFACE VirtAddr;
TYPE T <: REFANY; (* VirtAddr.T is opagque *)
PROCEDURE Allocate (size: Size; attrib: Attrib): T;

PROCEDURE Deallocate(v: T);
END VirtAddr.

INTERFACE Translation;
IMPORT PhysAddr, VirtAddr;
TYPE T <: REFANY; (* Translation.T is opagque *)
PROCEDURE Create(): T;

PROCEDURE Destroy(context: T);
(* Create or destroy an addressing context *)

PROCEDURE AddMapping (context: T; wv: VirtAddr.T;
p: PhysAddr.T; prot: Protection);
(* Add [v,p] into the named translation context
with the specified protection. *)

PROCEDURE RemoveMapping (context: T; v: VirtAddr.T);

PROCEDURE ExamineMapping(context: T;
v: VirtAddr.T): Protection;

(* A few events raised during *)
(* illegal translations ¥*)
PROCEDURE PageNotPresent(v: T);
PROCEDURE BadAddress(v: T);
PROCEDURE ProtectionFault(v: T);

END Translation.

Fi gure 3: The interfaces for managing physical addresses, virtual addresses, and translations.

v n V‘Uv lv‘vll" e e N N lv\-vll" N WS Wi el Wl W W

20

CPU o W PR I -

> Spir
SEe

> Evel
Bl

> Spir
Int

INTERFACE Strand;
TYPE T <: REFANY; (* Strand.T is cpague *)

PROCEDURE Block(s:T) ;
(* Signal to a scheduler that s is not runnable. *)

PROCEDURE Unblock(s: T);
(* Signal to a scheduler that s is runnable. *)

PROCEDURE Checkpoint(s: T);

(* Signal that s is being descheduled and that it
should save any processor state required for
subsequent rescheduling. *)

PROCEDURE Resume (s: T);

(* Signal that s is being placed on a processor and
that it should reestablish any state saved during
a prior call to Checkpoint. =*)

END Strand.

Figure 4: The Strand Interface. This interface describes the schedul-
ing events affecting control flow that can be raised within the kernel.
Application-specific schedulers and thread packages install handlers on
these events, which are raised on behalf of particular strands. A trusted
thread package and scheduler provide default implementations of these op-
erations, and ensure that extensions do not install handlers on strands for
which they do not possess a capability.

age

21

R

Experiments

Component | Source size Text size Data size
> System Components e T3 oyt BT %
SYs 1646 | 2.5| 42182 | 5.2 22397| 5.0
core 10866 | 16.5 | 170380 | 21.0| 89586 | 20.0
rt 14216 | 21.7 | 176171 | 21.8 | 104738 | 23.4
lib 1234 1.9(10752 1.3 3294 B
sal 37690 | 57.4 | 411065 | 50.7 | 227259 | 50.8
Total kernel | 65652 | 100 | 810550 | 100 | 447274 | 100

> Microbenchmarks
Protected communication
Thread management
Virtual memory

> Networking
» End-to- end Performance

22

R

Conclusions

>

>

>

>

Extensibility, protection and performance
Extensibility and protection provided by

language/compiler features and run-time checks

Instead of hardware address spaces
...which gives us performance—no border crossing

Who are we trusting? Consider application and
Spin
How does this compare to Exo-kernel?

23

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: Extensibility
	Slide 3: Existing Approaches
	Slide 4: How expensive are border crossings?
	Slide 5: OS design models
	Slide 6: OS as library (DOS-like)
	Slide 7: Monolithic Kernel
	Slide 8: Micro-kernel
	Slide 9: Summary
	Slide 10: Existing Approaches (cont’ed)
	Slide 11: What should an extensible OS do?
	Slide 12: Spin Approach to extensibility
	Slide 13: Logical protection domains
	Slide 14: Logical protection domains -- mechanisms
	Slide 15: Protection Model (I)
	Slide 16: Protection Model (II)
	Slide 17: Spin
	Slide 18: Spin Mechanisms for Events
	Slide 19: Event example
	Slide 20: Default Core services in SPIN
	Slide 21: CPU Scheduling
	Slide 22: Experiments
	Slide 23: Conclusions

