
CS 202: Advanced Operating

Systems

Scheduling

1

CPU Scheduling

Scheduler runs when we context switching among

processes/threads on the ready queue

What should it do? Does it matter?

Making the decision on what thread to run is called

scheduling

What are the goals of scheduling?

What are common scheduling algorithms?

Lottery scheduling

Stride Scheduling

Scheduling activations

User level vs. Kernel level scheduling of threads

2

Scheduling

Right from the start of multiprogramming, scheduling was identified

as a big issue

CCTS and Multics developed much of the classical algorithms

Scheduling is a form of resource allocation

CPU is the resource

Resource allocation needed for other resources too; sometimes similar

algorithms apply

Requires mechanisms and policy

Mechanisms: Context switching, Timers, process queues, process state

information, …

Scheduling looks at the policies: i.e., when to switch and which

process/thread to run next

3

Preemptive vs. Non-preemptive

scheduling

In preemptive systems where we can interrupt a running job

(involuntary context switch)

We’re interested in such schedulers…

In non-preemptive systems, the scheduler waits for a running

job to give up CPU (voluntary context switch)

Was interesting in the days of batch multiprogramming

Some systems continue to use cooperative scheduling

Example algorithms:

RR, FCFS, Shortest Job First (how to determine shortest), Priority

Scheduling

4

Scheduling Goals

What are some reasonable goals for a scheduler?

Scheduling algorithms can have many different goals:

CPU utilization

Job throughput (# jobs/unit time)

Response time (Avg(Tready): avg time spent on ready queue)

Fairness (or weighted fairness)

Other?

Non-interactive applications:

Strive for job throughput, turnaround time (supercomputers)

Interactive systems

Strive to minimize response time for interactive jobs

Mix?

5

Goals II: Avoid Resource allocation

pathologies

Starvation no progress due to no access to resources

E.g., a high priority process always prevents a low priority

process from running on the CPU

One thread always beats another when acquiring a lock

Priority inversion

A low priority process running before a high priority one

Could be a real problem, especially in real time systems

Mars pathfinder: http://research.microsoft.com/en-

us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

Other

Deadlock, livelock, …

6

First In First Out (FIFO)

Schedule tasks in the order they arrive

Continue running them until they complete or give up the

processor

Example: memcached

Facebook cache of friend lists, …

On what workloads is FIFO particularly bad?

Imagine being at supermarket to buy a drink of water, but get

stuck behind someone with a huge cart (or two!)

…and who pays in pennies!

Can we do better?

7

Shortest Job First (SJF)

Always do the task that has the shortest

remaining amount of work to do

Often called Shortest Remaining Time First

(SRTF)

Suppose we have five tasks arrive one right

after each other, but the first one is much

longer than the others

Which completes first in FIFO? Next?

Which completes first in SJF? Next?

8

FIFO vs. SJF

9

Whats the big deal?

Don’t they finish at

the same time?

SJF Example

10

ART = (0 + 8 + (8+4))/3 = 6.67

ART = (0 + 4 + (4+8))/3 = 5.33

ART = (0 + 4 + (4+2))/3 = 3.33

ART = (0 + 2 + (2+4))/3 = 2.67

SJF

Claim: SJF is optimal for average

response time

Why?

For what workloads is FIFO optimal?

For what is it pessimal (i.e., worst)?

Does SJF have any downsides?

11

Shortest Job First (SJF)

Problems?

Impossible to know size of CPU burst
Like choosing person in line without looking inside basket/cart

How can you make a reasonable guess?

Can potentially starve

Flavors

Can be either preemptive or non-preemptive

Preemptive SJF is called shortest remaining time

first (SRTF)

12

Preemptive scheduling: Round Robin

Each task gets resource for a fixed period of

time (time quantum)

If task doesn’t complete, it goes back in line

Need to pick a time quantum

What if time quantum is too long?

Infinite?

What if time quantum is too short?

One instruction?

13

Round Robin

Each task gets resource for a fixed period of

time (time quantum)

If task doesn’t complete, it goes back in line

Need to pick a time quantum

What if time quantum is too long?

Infinite?

What if time quantum is too short?

One instruction?

14

Round Robin

15

Round Robin vs. FIFO

Many context switches can be costly

Other than that, is Round Robin always

better than FIFO?

16

Round Robin vs. FIFO

17

Mixed Workload

18

Priority Scheduling

Priority Scheduling

Choose next job based on priority
Airline check-in for first class passengers

Can implement SJF, priority = 1/(expected CPU burst)

Also can be either preemptive or non-preemptive

Problem?

Starvation – low priority jobs can wait indefinitely

Solution

“Age” processes
Increase priority as a function of waiting time

Decrease priority as a function of CPU consumption

19

More on Priority Scheduling

For real-time (predictable) systems, priority is

often used to isolate a process from those

with lower priority. Priority inversion is a risk

unless all resources are jointly scheduled.

20

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

time

time

How can this be avoided?

PH

PL

PH

PL

PM

Priority Inheritance

If lower priority process is being waited on by

a higher priority process it inherits its priority

How does this help?

Does it prevent the previous problem?

Priority inversion is a big problem for real-

time systems

Mars pathfinder bug (link)

21

https://www.microsoft.com/en-us/research/people/mbj/?from=http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html

Combining Algorithms

Scheduling algorithms can be combined

Have multiple queues

Use a different algorithm for each queue

Move processes among queues

Example: Multiple-level feedback queues (MLFQ)

Multiple queues representing different job types
Interactive, CPU-bound, batch, system, etc.

Queues have priorities, jobs on same queue scheduled RR

Jobs can move among queues based upon execution history
Feedback: Switch from interactive to CPU-bound behavior

22

Multi-level Feedback Queue (MFQ)

Goals:

Responsiveness

Low overhead

Starvation freedom

Some tasks are high/low priority

Fairness (among equal priority tasks)

Not perfect at any of them!

Used in Unix (and Windows and MacOS)

23

MFQ

24

Unix Scheduler

The canonical Unix scheduler uses a MLFQ
3-4 classes spanning ~170 priority levels

Timesharing: first 60 priorities

System: next 40 priorities

Real-time: next 60 priorities

Interrupt: next 10 (Solaris)

Priority scheduling across queues, RR within a queue
The process with the highest priority always runs

Processes with the same priority are scheduled RR

Processes dynamically change priority
Increases over time if process blocks before end of quantum

Decreases over time if process uses entire quantum

25

Linux scheduler

Went through several iterations

Currently CFS

Fair scheduler, like stride scheduling

Supersedes O(1) scheduler: emphasis on

constant time scheduling regardless of overhead

CFS is O(log(N)) because of red-black tree

Is it really fair?

What to do with multi-core scheduling?

26

Problems with Traditional schedulers

Priority systems are ad hoc: highest priority always wins

Try to support fair share by adjusting priorities with a

feedback loop

Works over long term

highest priority still wins all the time, but now the Unix priorities

are always changing

Priority inversion: high-priority jobs can be blocked

behind low-priority jobs

Schedulers are complex and difficult to control

	Slide 1: CS 202: Advanced Operating Systems
	Slide 2: CPU Scheduling
	Slide 3: Scheduling
	Slide 4: Preemptive vs. Non-preemptive scheduling
	Slide 5: Scheduling Goals
	Slide 6: Goals II: Avoid Resource allocation pathologies
	Slide 7: First In First Out (FIFO)
	Slide 8: Shortest Job First (SJF)
	Slide 9: FIFO vs. SJF
	Slide 10: SJF Example
	Slide 11: SJF
	Slide 12: Shortest Job First (SJF)
	Slide 13: Preemptive scheduling: Round Robin
	Slide 14: Round Robin
	Slide 15: Round Robin
	Slide 16: Round Robin vs. FIFO
	Slide 17: Round Robin vs. FIFO
	Slide 18: Mixed Workload
	Slide 19: Priority Scheduling
	Slide 20: More on Priority Scheduling
	Slide 21: Priority Inheritance
	Slide 22: Combining Algorithms
	Slide 23: Multi-level Feedback Queue (MFQ)
	Slide 24: MFQ
	Slide 25: Unix Scheduler
	Slide 26: Linux scheduler
	Slide 27: Problems with Traditional schedulers

