
© David Kirk/NVIDIA and Wen-mei W. Hwu,
University of Illinois, 2007-2012!

1

CS/EE 217 GPU Architecture and Parallel
Programming

Lecture 11

Parallel Computation Patterns –
Parallel Prefix Sum (Scan)

2

Objective

•  To master parallel Prefix Sum (Scan) algorithms
–  frequently used for parallel work assignment and resource

allocation
–  A key primitive to in many parallel algorithms to convert

serial computation into parallel computation
–  Based on reduction tree and reverse reduction tree

•  Reading –Efficient Parallel Scan Algorithms for GPUs
–  https://research.nvidia.com/sites/default/files/publications/

nvr-2008-003.pdf

(Inclusive) Prefix-Sum (Scan) Definition

3

Definition: The all-prefix-sums operation takes a binary
associative operator ⊕, and an array of n elements!
 [x0, x1, …, xn-1],!
!
and returns the array!
!

! ![x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].!
!
Example: If ⊕ is addition, then the all-prefix-sums operation
on the array ! ![3 1 7 0 4 1 6 3],!
would return! ![3 4 11 11 15 16 22 25].!

A Inclusive Scan Application Example

•  Assume that we have a 100-inch sausage to feed 10
•  We know how much each person wants in inches

–  [3 5 2 7 28 4 3 0 8 1]

•  How do we cut the sausage quickly?
•  How much will be left

•  Method 1: cut the sections sequentially: 3 inches first,
5 inches second, 2 inches third, etc.

•  Method 2: calculate Prefix scan
–  [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

4

5

Typical Applications of Scan
•  Scan is a simple and useful parallel building block

–  Convert recurrences from sequential :
 for(j=1;j<n;j++)
 out[j] = out[j-1] + f(j);

–  into parallel:
 forall(j) { temp[j] = f(j) };
 scan(out, temp);

•  Useful for many parallel algorithms:
•  radix sort
•  quicksort
•  String comparison
•  Lexical analysis
•  Stream compaction

•  Polynomial evaluation
•  Solving recurrences
•  Tree operations
•  Histograms
•  Etc.

Other Applications

•  Assigning camp slots
•  Assigning farmer market space
•  Allocating memory to parallel threads
•  Allocating memory buffer for communication

channels
•  …

6

An Inclusive Sequential Scan

Given a sequence [x0, x1, x2, ...]
Calculate output [y0, y1, y2, ...]

Such that y0 = x0

 y1 = x0 + x1

 y2 = x0 + x1+ x2

 …
Using a recursive definition

 yi = yi − 1 + xi

7

A Work Efficient C Implementation

 y[0] = x[0];
 for (i = 1; i < Max_i; i++) y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)!

8

How do we do this in parallel?

•  What is the relationship between Parallel Scan and
Reduction?
–  Multiple reduction operations!
–  What if we implement it that way?

•  How many operations?
–  Each reduction tree is O(n) operations
–  Reduction trees of size n, n-1, n-2, n-3, … 1
–  Very work inefficient! Important concept

9

10

A Slightly Better Parallel Inclusive Scan
Algorithm

1.  Read input from
device memory to
shared memory

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 3 1 7 0 4 1 6 3

11

A Slightly Better Parallel Scan Algorithm

1.  (previous slide)

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

•  Active threads: stride to n-1 (n-stride threads)
•  Thread j adds elements j and j-stride from T0 and
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 3 4 8 7 4 5 7 9

Stride 1

T0 3 1 7 0 4 1 6 3

12

A Slightly Better Parallel Scan Algorithm

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

1.  Read input from
device memory to
shared memory.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #2
Stride = 2

T0 3 1 7 0 4 1 6 3

13

A Slightly Better Parallel Scan Algorithm

T1 3 4 11 11 15 16 22 25

1.  Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
memory arrays)

3.  Write output from
shared memory to
device memory

Iteration #3
Stride = 4

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

T0 3 1 7 0 4 1 6 3

Stride 4

Handling Dependencies

•  During every iteration, each therad can overwrite the
input of another thread
–  Need barrier synchronization to ensure all inputs have been

properly generated
–  All threads secure input operand that can be overwritten by

another thread
–  Barrier synchronization to ensure that threads have secured

their inputs
–  All threads perform addition to write output

14

Work inefficient scan kernel
__shared__ float XY[SECTION_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x;

//load into shared memory
if (i < InputSize) { XY[threadIdx.x] = X[i];}

//perform iterative scan on XY
for (unsigned int stride = 1; stride <= threadIdx.x; stride *=2) {

 __synchthreads();
 float in1 = XY[threadIdx.x – stride];
 __synchthreads();
 XY[threadIdx.x]+=in1;

}

 15

16

Work Efficiency Considerations

•  The first-attempt Scan executes log(n) parallel iterations
–  The steps do (n-1), (n-2), (n-4),..(n- n/2) adds each
–  Total adds: n * log(n) - (n-1) à O(n*log(n)) work

•  This scan algorithm is not very work efficient
–  Sequential scan algorithm does n adds
–  A factor of log(n) hurts: 20x for 10^6 elements!

•  A parallel algorithm can be slow when execution resources are
saturated due to low work efficiency

17

Improving Efficiency

•  A common parallel algorithm pattern:
Balanced Trees

–  Build a balanced binary tree on the input data and sweep it to and
from the root

–  Tree is not an actual data structure, but a concept to determine what
each thread does at each step

•  For scan:
–  Traverse down from leaves to root building partial sums at internal

nodes in the tree
•  Root holds sum of all leaves

–  Traverse back up the tree building the scan from the partial sums

Parallel Scan - Reduction Step

18

+

+

+ + +

+

+

x0! x3! x4! x5! x6! x7!x1! x2!

∑x0..x1! ∑x2..x3! ∑x4..x5! ∑x6..x7!

∑x0..x3!
∑x4..x7!

∑x0..x7!

Time!

In place calculation !
Final value after reduce

Reduction Step Kernel Code

19

 // scan_array[BLOCK_SIZE*2] is in shared memory

for(int stride=1; stride<= BLOCK_SIZE; stride *=2)
 {
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index < 2*BLOCK_SIZE)
 scan_array[index] += scan_array[index-stride];
 stride = stride*2;

 __syncthreads();
 }

Inclusive Post Scan Step

20

+

x0! x4! x6!x2!∑x0..x1! ∑x4..x5!∑x0..x3! ∑x0..x7!

∑x0..x5!

Move (add) a critical value to a
central location where it is

needed!

Inclusive Post Scan Step

21

+

x0! x4! x6!x2!∑x0..x1! ∑x4..x5!∑x0..x3! ∑x0..x7!

∑x0..x5!

+ +

∑x0..x2! ∑x0..x4!

+

∑x0..x6!

Putting it Together

22

ANY MORE QUESTIONS?

© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2012!

23

