CS/EE 217 GPU Architecture and Parallel
Programming

Lecture 11
Parallel Computation Patterns —

Parallel Prefix Sum (Scan)

© David Kirk/NVIDIA and Wen-mei W. Hwu,
University of Illinois, 2007-2012



Objective

e To master parallel Prefix Sum (Scan) algorithms

— frequently used for parallel work assignment and resource
allocation

— A key primitive to in many parallel algorithms to convert
serial computation into parallel computation

— Based on reduction tree and reverse reduction tree

« Reading —Efficient Parallel Scan Algorithms for GPUs

— https://research.nvidia.com/sites/default/files/publications/
nvr-2008-003.pdf



(Inclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary
associative operator ®, and an array of n elements

[Xo, X1, o) X1l
and returns the array
[xo (xg®xq), ..., (xg@xy9...@2x_)]
Example: If @ is addition, then the all-prefix-sums operation

on the array 317 04 1 6 3]
would return [3 41111 1516 22 25].



A Inclusive Scan Application Example

« Assume that we have a 100-1nch sausage to feed 10

 We know how much each person wants in inches
—[35 2 7 28430 8 1]

 How do we cut the sausage quickly?
 How much will be left

 Method 1: cut the sections sequentially: 3 inches first,
5 1inches second, 2 inches third, etc.

e Method 2: calculate Prefix scan
—[3,8,10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)



Typical Applications of Scan

* Scan 1s a simple and useful parallel building block

— Convert recurrences from sequential :
for (j=1;3i<n; Jj++)
out[j] = out[j-1] + £(J);

— 1nto parallel:
forall(j) { temp[j] = £(3) };
scan (out, temp)

e Useful for many parallel algorithms:

*  radix sort e  Polynomial evaluation
e quicksort «  Solving recurrences

e  String comparison « Tree operations

* Lexical analysis «  Histograms

*  Stream compaction  Etc.



Other Applications

Assigning camp slots
Assigning farmer market space
Allocating memory to parallel threads

Allocating memory buffer for communication
channels



An Inclusive Sequential Scan

Given a sequence [x,, X, X, ... |
Calculate output [y, Vi, Vs .- |

Such that Yo = X
V1= Xt X

Yy =Xp T X T X,

Using a recursive definition

YVi=YVio X



A Work Efficient C Implementation

y[0] =x[0];
for 1= 1;1<Max 1;1++) y[1] =y [1-1] + x[1];

Computationally efficient:

N additions needed for N elements - O(N)!



How do we do this 1n parallel?

 What 1s the relationship between Parallel Scan and
Reduction?

— Multiple reduction operations!
— What if we implement it that way?

 How many operations?
— Each reduction tree 1s O(n) operations
— Reduction trees of size n, n-1, n-2, n-3, ... 1

— Very work 1nefficient! Important concept



A Slightly Better Parallel Inclusive Scan
Algorithm

TO | 3 1 7 0 4 1 6 3 1. Read input from

device memory to

shared memory

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread 0 writes O into shared memory array.

10



times: Threads stride
to n: Add pairs of

Double stride at each
iteration. (note must
double buffer shared

A Slightly Better Parallel Scan Algorithm
10 3 1 7 0 4 1 6 3 1. (previous slide)
\ \
Stride 1 l\>€9 \@\)@
2. lterate log(n)
T1 | 3
elements stride
elements apart.
mem arrays)
teration #1 | | Active threads: stride to n-1 (n-stride threads)
eration * Thread j adds elements j and j-stride from TO and
Stride = 1 , . .
writes result into shared memory buffer T1 (ping-pong)

11



A Slightly Better Parallel Scan Algorithm

. Read input from

1
T0| 3 1 7 O,‘ 4 1_ 6,‘ 3 J device memory to
Stride 1 M \@\)ﬁs\)@‘\)@\)@ shared memory.
T1 | 3 2. lterate log(n)
3 3 n times: Threads stride
Stride 2 to n: Add pairs of
elements stride
10| 3 4 —‘ elements apart.

Double stride at each
iteration. (note must
double buffer shared
mem arrays)

lteration #2
Stride = 2

12



o[ 31 ]7]o0l4]1]6]3]|
IStride 1 M\@\@ Do P @
T1 | 3 / : ‘
Stride 2 W—@
TO| 3 4
\
Stride 4 v v
T1 | 3 4 |11 | 11
lteration #3
Stride =4

A Slightly Better Parallel Scan Algorithm

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. lterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
memory arrays)

. Write output from

shared memory to
device memory 13



Handling Dependencies

* During every iteration, each therad can overwrite the
input of another thread

— Need barrier synchronization to ensure all inputs have been
properly generated

— All threads secure input operand that can be overwritten by
another thread

— Barrier synchronization to ensure that threads have secured
their inputs

— All threads perform addition to write output

14



Work 1nefficient scan kernel

__shared float XY[SECTION_ SIZE];
int 1 = blockIdx.x * blockDim.x + threadldx.x;

//load nto shared memory
if (1 < InputSize) { XY [threadldx.x] = X[1];}

//perform iterative scan on XY

for (unsigned int stride = 1; stride <= threadldx.x; stride *=2) {
__synchthreads();
float in]1 = XY[threadldx.x — stride];
__synchthreads();
XY [threadldx.x]+=1n1;

15



Work Efficiency Considerations

The first-attempt Scan executes log(n) parallel iterations
— The steps do (n-1), (n-2), (n-4),..(n- n/2) adds each
— Total adds: n * log(n) - (n-1) =2 O(n*log(n)) work

This scan algorithm 1s not very work efficient

— Sequential scan algorithm does 7 adds
— A factor of log(n) hurts: 20x for 1076 elements!

A parallel algorithm can be slow when execution resources are
saturated due to low work efficiency

16



Improving Efficiency

A common parallel algorithm pattern:
Balanced Trees

— Build a balanced binary tree on the input data and sweep it to and
from the root

— Tree 1s not an actual data structure, but a concept to determine what
each thread does at each step

e For scan:

— Traverse down from leaves to root building partial sums at internal
nodes in the tree

 Root holds sum of all leaves

— Traverse back up the tree building the scan from the partial sums

17



Time

Parallel Scan - Reduction Step

X0 X1
2X0.%q

Xy X3 X4 X5

2.X0. X3

In place calculation

‘ Final value after reduce ‘

2 X6 X7

DXy Xy

e

2X0. Xy




Reduction Step Kernel Code

// scan_array[BLOCK_SIZE*2] is in shared memory

for(int stride=1; stride<= BLOCK_SIZE; stride *=2)
{
int index = (threadldx.x+1)*stride*2 - 1;
if(index < 2*"BLOCK_SIZE)
scan_array[index] += scan_array[index-stride];
stride = stride*2;

__syncthreads();

}

19



Inclusive Post Scan Step

2.X0.%q

X9

2.X0. X3

Move (add) a critical value to a

T~

Xy

2X4 X5

2.X0. X5

X6

2.X0. X7

central location where it is

nee

Hed

20



Inclusive Post Scan Step

2.X0.%q

X9

2X0. X3 Xy

2X4 X5

T

2.X0. X5

"\
Y

2.X0. %

2X0.%y

X6

2.X0. X7

2.X0. %6

21



EQ?

Putting it Together

il

%




ANY MORE QUESTIONS?

© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2012

23



