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Lecture 6: DRAM Bandwidth 
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Objective 

•  To understand DRAM bandwidth 
–  Cause of the DRAM bandwidth problem 
–  Programming techniques that address the problem: 

memory coalescing, corner turning, 
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Global Memory (DRAM) Bandwidth 

Ideal   Reality 
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DRAM Bank Organization 

•  Each core array has 
about 1M bits 

•  Each bit is stored in a 
tiny capacitor, made 
of one transistor 
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A very small (8x2 bit) DRAM Bank 
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DRAM core arrays are slow. 

•  Reading from a cell in the core array is a very 
slow process 
–  DDR: Core speed = ½ interface speed 
–  DDR2/GDDR3: Core speed = ¼ interface speed 
–  DDR3/GDDR4: Core speed = ⅛ interface speed 
– … likely to be worse in the future 
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©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/
ECE498AL, University of Illinois, 2007-2012

6 



DRAM Bursting. 

•  For DDR{2,3} SDRAM 
cores clocked at 1/N 
speed of the interface: 

–  Load (N × interface width) of 
DRAM bits from the same 
row at once to an internal 
buffer, then transfer in N 
steps at interface speed 

–  DDR2/GDDR3: buffer 
width = 4X interface width 
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DRAM Bursting 

de
co

de
 

0 1 0 

Sense amps 

Mux 
8 



DRAM Bursting 
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DRAM Bursting for the 8x2 Bank 
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Modern DRAM systems are designed to 
be always accessed in burst mode. Burst 
bytes are transferred but discarded when 
accesses are not to sequential locations. 
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Multiple DRAM Banks 
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DRAM Bursting for the 8x2 Bank 
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Single-Bank burst timing, dead time on interface 

Multi-Bank burst timing, reduced dead time  
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First-order Look at the GPU off-chip 
memory subsystem 

•  nVidia GTX280 GPU:  
–  Peak global memory bandwidth = 141.7GB/s 

•  Global memory (GDDR3) interface @ 1.1GHz 
–  (Core speed @ 276Mhz) 
–  For a typical 64-bit interface, we can sustain only 

about 17.6 GB/s (Recall DDR - 2 transfers per clock) 
–  We need a lot more bandwith (141.7 GB/s) – thus 8 

memory channels 
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Multiple Memory Channels 

•  Divide the memory address space into N parts 
–  N is number of memory channels 
–  Assign each portion to a channel 
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Memory Controller Organization of a 
Many-Core Processor 

•  GTX280: 30 Stream Multiprocessors (SM) 
connected to 8-channel DRAM controllers 
through interconnect 
–  DRAM controllers are interleaved 
–  Within DRAM controllers (channels), DRAM 

banks are interleaved for incoming memory 
requests 
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Base Matrix Multiplication Kernel 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 
 
float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += d_M[Row*Width+k]* d_N[k*Width+Col]; 
 
d_P[Row*Width+Col] = Pvalue; 
} 17 



Two Access Patterns  
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k is loop counter in the inner product loop of the kernel code  
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M accesses are not coalesced.  
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__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 
{ 
1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 
2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 

3.  int bx = blockIdx.x;  int by = blockIdx.y; 
4.  int tx = threadIdx.x; int ty = threadIdx.y; 

// Identify the row and column of the d_P element to work on 
5.  int Row = by * TILE_WIDTH + ty; 
6.  int Col = bx * TILE_WIDTH + tx; 
 

7.   float Pvalue = 0; 

// Loop over the d_M and d_N tiles required to compute the d_P element 
8.    for (int m = 0; m < Width/TILE_WIDTH; ++m) { 
 

// Coolaborative loading of d_M and d_N tiles into shared memory 
9.    Mds[tx][ty] = d_M[Row*Width + m*TILE_WIDTH+tx]; 
10.    Nds[tx][ty] = d_N[(m*TILE_WIDTH+ty)*Width + Col]; 

11.    __syncthreads(); 
12.   for (int k = 0; k < TILE_WIDTH; ++k) 
13.      Pvalue += Mds[tx][k] * Nds[k][ty]; 

14.    __synchthreads(); 
   } 

15.   d_P[Row*Width+Col] = Pvalue;   
} 
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Figure 6.10: Using shared memory to enable coalescing



ANY MORE QUESTIONS? 
READ CHAPTER 6 
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