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Objective

 To understand DRAM bandwidth
— Cause of the DRAM bandwidth problem

— Programming techniques that address the problem:
memory coalescing, corner turning,
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DRAM Bank Organization
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A very small (8x2 bit) DRAM Bank
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DRAM core arrays are slow.

* Reading from a cell in the core array is a very
slow process

— DDR: Core speed = V% interface speed
— DDR2/GDDR3: Core speed = V4 interface speed
— DDR3/GDDR4: Core speed = s interface speed

— ... likely to be worse in the future

About 1000 cells connected to
each vertical line
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DRAM Bursting.

 For DDR{2,3} SDRAM
cores clocked at 1/N
speed of the interface:

— Load (N x interface width) of
DRAM bits from the same
row at once to an internal
buffer, then transfer in N
steps at interface speed

— DDR2/GDDR3: buffer
width = 4X interface width
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DRAM Bursting
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DRAM Bursting
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DRAM Bursting for the 8x2 Bank

Address bits
to decoder
2 bits 2 bits
Core Array access delay to pin to pin
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Non-burst timing

Modern DRAM systems are designed to

A - be always accessed in burst mode. Burst

Burst timing bytes are transferred but discarded when

accesses are not to sequential locations.
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Multiple DRAM Banks
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DRAM Bursting for the 8x2 Bank

Address bits

to decoder

2 bits 2 bits
Core Array access delay to pin to pin
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Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time
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First-order Look at the GPU off-chip
memory subsystem

* nVidia GTX280 GPU:
— Peak global memory bandwidth = 141.7GB/s

* Global memory (GDDRJ3) interface @ 1.1GHz
— (Core speed @ 276Mhz)

— For a typical 64-bit interface, we can sustain only
about 17.6 GB/s (Recall DDR - 2 transfers per clock)

— We need a lot more bandwith (141.7 GB/s) — thus 8
memory channels
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Multiple Memory Channels

* Divide the memory address space into N parts
— N is number of memory channels
— Assign each portion to a channel

Bank Bank Bank Bank

Channel Channel Channel Channel
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Memory Controller Organization of a
Many-Core Processor

« GTX280: 30 Stream Multiprocessors (SM)
connected to 8-channel DRAM controllers
through interconnect

— DRAM controllers are interleaved

— Within DRAM controllers (channels), DRAM
banks are interleaved for incoming memory
requests
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Placing a 2D C array into linear
memory space

linearized order in increasing address



Base Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += d M[Row*Width+k]* d N[k*Width+Col];

d P[Row*Width+Col] = Pwvalue;
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Two Access Patterns

Thread 1 —
Thread 2

(a) (b)

d M[Row*Width+tk] d N[k*Width+Col]

k 1s loop counter in the inner product loop of the kernel codeg



N accesses are coalesced.
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M accesses are not coalesced.

Access
direction in
Kernel code

MI,O Ml,l M1,2 M1,3

d M[Row*Width+k]
M,o My, M,, M,; T

M3,0 M3,1 M3,2 M3,3

0 Tl T2 T3
A

Load iteration 1

A A

Load iteration 0

1, 1, 15

MI,O Ml,l MI,Z M1,3 M2,O M2,1 M2,2 M2,3 M3,O M3,1 M3,2 M3,3

20



__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)

{

1.  shared float Mds[TILE WIDTH][TILE WIDTH];

2.  shared float Nds[TILE WIDTH] [TILE WIDTH];

3. 1nt bx = blocklIdx.x; int by = blockIdx.y;

4. 1nt tx = threadldx.x; 1int ty = threadIldx.y;

// Identify the row and column of the d P element to work on
5. int Row = by * TILE WIDTH + ty;

6. 1nt Col = bx * TILE WIDTH + tx;

7. float Pvalue = 0;

// Loop over the d M and d N tiles required to compute the d P element
8. for (int m = 0; m < Width/TILE WIDTH; ++m) {

// Coolaborative loading of d M and d N tiles into shared memory

9. Mds[tx] [ty] = d M[Row*Width + m*TILE WIDTH+tx];
10. Nds[tx] [ty] = d N[ (m*TILE WIDTH+ty)*Width + Col];
11. __syncthreads () ;
12. for (int k = 0; k < TILE WIDTH; ++k)
13. Pvalue += Mds|[tx][k] * Nds[k][ty];
14. __synchthreads() ;
}
15. d P[Row*Width+Col] = Pvalue;
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Figure 6.10: Using shared memory to enablé coalescing



ANY MORE QUESTIONS?
READ CHAPTER 6
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