CS/EE 217
GPU Architecture and Parallel Programming

Lecture 6: DRAM Bandwidth

©Wen-mei W. Hwu and David Kirk/NVIDIA, University of
Illinois, 2007-2012

Objective

 To understand DRAM bandwidth
— Cause of the DRAM bandwidth problem

— Programming techniques that address the problem:
memory coalescing, corner turning,

Global Memory (DRAM) Bandwidth

Ideal Reality

DRAM Bank Organization

« Each core array has
about 1M bits

Row I ecod core n
ecode ore Array o |
Addr « Each bit is stored in a
T tiny capacitor, made
Sense Amps of one transistor

v

Column Latches

Column—=-_"Mux " Pin Interface
Addr

Off-chip Data

A very small (8x2 bit) DRAM Bank

0] 1] 1

decode

v

Sense amps

DRAM core arrays are slow.

* Reading from a cell in the core array is a very
slow process

— DDR: Core speed = V% interface speed
— DDR2/GDDR3: Core speed = V4 interface speed
— DDR3/GDDR4: Core speed = s interface speed

— ... likely to be worse in the future

About 1000 cells connected to
each vertical line

%

L A very small capacitance

— that stores a data bit
1

decode

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECHig3/Setpfs e amps

FCFA40RAT TTnivercitv of T1linoic 20072019

DRAM Bursting.

 For DDR{2,3} SDRAM
cores clocked at 1/N
speed of the interface:

— Load (N x interface width) of
DRAM bits from the same
row at once to an internal
buffer, then transfer in N
steps at interface speed

— DDR2/GDDR3: buffer
width = 4X interface width

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/
FCFA40RAT TTnivercitv of T1linoic 20072019

DRAM Bursting

decode

v v v

Sense amps

‘l'll

> Mux

Vv

DRAM Bursting

decode

v A4 v v

Sense amps and buffer

ll‘l"l'

\ Mux

DRAM Bursting for the 8x2 Bank

Address bits
to decoder
2 bits 2 bits
Core Array access delay to pin to pin
J Pt—r—> tlme

T ————————

Non-burst timing

Modern DRAM systems are designed to

A - be always accessed in burst mode. Burst

Burst timing bytes are transferred but discarded when

accesses are not to sequential locations.
10

Multiple DRAM Banks

1 |1
N >
Q
ey ——>
3 Q
o S| o >
N >
v \ v v v A4 v v
Sense amps Sil'lse Elmpsl
w\ WMUX‘L l \ Mux /

/
Bank 0 ii Bank 1 ¢¢ 3

11

DRAM Bursting for the 8x2 Bank

Address bits

to decoder

2 bits 2 bits
Core Array access delay to pin to pin

L]
> » & » & »
< >4 >4 » I[I]e

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time
12

First-order Look at the GPU off-chip
memory subsystem

* nVidia GTX280 GPU:
— Peak global memory bandwidth = 141.7GB/s

* Global memory (GDDRJ3) interface @ 1.1GHz
— (Core speed @ 276Mhz)

— For a typical 64-bit interface, we can sustain only
about 17.6 GB/s (Recall DDR - 2 transfers per clock)

— We need a lot more bandwith (141.7 GB/s) — thus 8
memory channels

13

Multiple Memory Channels

* Divide the memory address space into N parts
— N is number of memory channels
— Assign each portion to a channel

Bank Bank Bank Bank

Channel Channel Channel Channel
0 I 2 3

Memory Controller Organization of a
Many-Core Processor

« GTX280: 30 Stream Multiprocessors (SM)
connected to 8-channel DRAM controllers
through interconnect

— DRAM controllers are interleaved

— Within DRAM controllers (channels), DRAM
banks are interleaved for incoming memory
requests

15

Placing a 2D C array into linear
memory space

linearized order in increasing address

Base Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{

// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE WIDTH + threadIdx.y;

// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE WIDTH + threadIdx.x;

float Pvalue = 0;

// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += d M[Row*Width+k]* d N[k*Width+Col];

d P[Row*Width+Col] = Pwvalue;

} 17

Two Access Patterns

Thread 1 —
Thread 2

(a) (b)

d M[Row*Width+tk] d N[k*Width+Col]

k 1s loop counter in the inner product loop of the kernel codeg

N accesses are coalesced.

Access

direction in | ESFERNTRBNE A

Kernel code

N2,O N2,l N2,2 N2,3

N3,0 N3,1 N3,2 N3,3

Load iteration 0

I, T, T, 1;

Load iteration 1

I, T, T, 1;

N

A 4

|11

Nl,O Nl,l N1,2 N1,3 NZ,O N2,l N2,2 N2,3 N3,0 N3,l N3,2 N3,3

19

M accesses are not coalesced.

Access
direction in
Kernel code

MI,O Ml,l M1,2 M1,3

d M[Row*Width+k]
M,o My, M,, M,; T

M3,0 M3,1 M3,2 M3,3

0 Tl T2 T3
A

Load iteration 1

A A

Load iteration 0

1, 1, 15

MI,O Ml,l MI,Z M1,3 M2,O M2,1 M2,2 M2,3 M3,O M3,1 M3,2 M3,3

20

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)

{

1. shared float Mds[TILE WIDTH][TILE WIDTH];

2. shared float Nds[TILE WIDTH] [TILE WIDTH];

3. 1nt bx = blocklIdx.x; int by = blockIdx.y;

4. 1nt tx = threadldx.x; 1int ty = threadIldx.y;

// Identify the row and column of the d P element to work on
5. int Row = by * TILE WIDTH + ty;

6. 1nt Col = bx * TILE WIDTH + tx;

7. float Pvalue = 0;

// Loop over the d M and d N tiles required to compute the d P element
8. for (int m = 0; m < Width/TILE WIDTH; ++m) {

// Coolaborative loading of d M and d N tiles into shared memory

9. Mds[tx] [ty] = d M[Row*Width + m*TILE WIDTH+tx];
10. Nds[tx] [ty] = d N[(m*TILE WIDTH+ty)*Width + Col];
11. __syncthreads () ;
12. for (int k = 0; k < TILE WIDTH; ++k)
13. Pvalue += Mds|[tx][k] * Nds[k][ty];
14. __synchthreads() ;
}
15. d P[Row*Width+Col] = Pvalue;

22

Original
Access
Pattern

A
v

Tiled

Access

Copy into
scratchpad
memory

=is

Perform
multiplication
with scratchpad
values

Figure 6.10: Using shared memory to enablé coalescing

ANY MORE QUESTIONS?
READ CHAPTER 6

23

