
©Wen-mei W. Hwu and David Kirk/NVIDIA, University of
Illinois, 2007-2012

CS/EE 217
GPU Architecture and Parallel Programming

Lecture 6: DRAM Bandwidth

1

Objective

•  To understand DRAM bandwidth
–  Cause of the DRAM bandwidth problem
–  Programming techniques that address the problem:

memory coalescing, corner turning,

2

Global Memory (DRAM) Bandwidth

Ideal Reality

3

DRAM Bank Organization

•  Each core array has
about 1M bits

•  Each bit is stored in a
tiny capacitor, made
of one transistor

Memory Cell
Core Array

Row
Decoder

Sense Amps

Column Latches

Mux

Row
Addr

Column
Addr

Off-chip Data

Wide

Narrow
Pin Interface

4

A very small (8x2 bit) DRAM Bank

de
co

de

0 1 1

Sense amps

Mux
5

DRAM core arrays are slow.

•  Reading from a cell in the core array is a very
slow process
–  DDR: Core speed = ½ interface speed
–  DDR2/GDDR3: Core speed = ¼ interface speed
–  DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future

de
co

de

To sense amps

A very small capacitance
that stores a data bit

About 1000 cells connected to
each vertical line

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/
ECE498AL, University of Illinois, 2007-2012

6

DRAM Bursting.

•  For DDR{2,3} SDRAM
cores clocked at 1/N
speed of the interface:

–  Load (N × interface width) of
DRAM bits from the same
row at once to an internal
buffer, then transfer in N
steps at interface speed

–  DDR2/GDDR3: buffer
width = 4X interface width

©Wen-mei W. Hwu and David Kirk/NVIDIA, ECE408/CS483/
ECE498AL, University of Illinois, 2007-2012

7

DRAM Bursting

de
co

de

0 1 0

Sense amps

Mux
8

DRAM Bursting

de
co

de

0 1 1

Sense amps and buffer

Mux
9

DRAM Bursting for the 8x2 Bank

time

Address bits
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Non-burst timing

Burst timing

Modern DRAM systems are designed to
be always accessed in burst mode. Burst
bytes are transferred but discarded when
accesses are not to sequential locations.

10

Multiple DRAM Banks

de
co

de

Sense amps

Mux
de

co
de

Sense amps

Mux

0 1 1 0

Bank 0 Bank 1
11

DRAM Bursting for the 8x2 Bank

time

Address bits
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time
12

First-order Look at the GPU off-chip
memory subsystem

•  nVidia GTX280 GPU:
–  Peak global memory bandwidth = 141.7GB/s

•  Global memory (GDDR3) interface @ 1.1GHz
–  (Core speed @ 276Mhz)
–  For a typical 64-bit interface, we can sustain only

about 17.6 GB/s (Recall DDR - 2 transfers per clock)
–  We need a lot more bandwith (141.7 GB/s) – thus 8

memory channels

13

Multiple Memory Channels

•  Divide the memory address space into N parts
–  N is number of memory channels
–  Assign each portion to a channel

Channel
0

Channel
1

Channel
2

Channel
3

Bank Bank Bank Bank

14

Memory Controller Organization of a
Many-Core Processor

•  GTX280: 30 Stream Multiprocessors (SM)
connected to 8-channel DRAM controllers
through interconnect
–  DRAM controllers are interleaved
–  Within DRAM controllers (channels), DRAM

banks are interleaved for incoming memory
requests

15

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M3,1 M3,0 M3,2 M3,3

M

linearized order in increasing address

Placing a 2D C array into linear
memory space

Base Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += d_M[Row*Width+k]* d_N[k*Width+Col];

d_P[Row*Width+Col] = Pvalue;
} 17

Two Access Patterns

18

d_M d_N

W
 I D T H

WIDTH

Thread 1
Thread 2

(a) (b)

d_M[Row*Width+k] d_N[k*Width+Col]

k is loop counter in the inner product loop of the kernel code

19

N
T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction in
Kernel code

…

N0,2

N1,1

N0,1 N0,0

N1,0

N0,3

N1,2 N1,3

N2,1 N2,0 N2,2 N2,3

N3,1 N3,0 N3,2 N3,3

N0,2 N0,1 N0,0 N0,3 N1,1 N1,0 N1,2 N1,3 N2,1 N2,0 N2,2 N2,3 N3,1 N3,0 N3,2 N3,3

N accesses are coalesced.

M accesses are not coalesced.

20

M
T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction in
Kernel code

…

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 M3,1 M3,0 M3,2 M3,3

d_M[Row*Width+k]

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the d_P element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

// Loop over the d_M and d_N tiles required to compute the d_P element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of d_M and d_N tiles into shared memory
9. Mds[tx][ty] = d_M[Row*Width + m*TILE_WIDTH+tx];
10.  Nds[tx][ty] = d_N[(m*TILE_WIDTH+ty)*Width + Col];

11.  __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k)
13.  Pvalue += Mds[tx][k] * Nds[k][ty];

14. __synchthreads();
 }

15. d_P[Row*Width+Col] = Pvalue;
}

22

d_M d_N

W
 I D T H

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

Figure 6.10: Using shared memory to enable coalescing

ANY MORE QUESTIONS?
READ CHAPTER 6

23

