
Competitive Data-Structure Dynamization∗

CLAIRE MATHIEU, CNRS, France
RAJMOHAN RAJARAMAN†, Northeastern University, USA

NEAL E. YOUNG‡, University of California Riverside, USA

ARMAN YOUSEFI, Google, USA

Data-structure dynamization is a general approach for making static data structures dynamic. It is used

extensively in geometric settings and in the guise of so-called merge (or compaction) policies in big-data

databases such as LevelDB and Google Bigtable. Previous theoretical work is based on worst-case analyses for

uniform inputs — insertions of one item at a time and non-varying read rate. In practice, merge policies must

not only handle batch insertions and varying read/write ratios, they can take advantage of such non-uniformity

to reduce cost on a per-input basis.

To model this, we initiate the study of data-structure dynamization through the lens of competitive analysis,

via two new online set-cover problems. For each, the input is a sequence of disjoint sets of weighted items.

The sets are revealed one at a time. The algorithm must respond to each with a set cover that covers all items

revealed so far. It obtains the cover incrementally from the previous cover by adding one or more sets and

optionally removing existing sets. For each new set the algorithm incurs build cost equal to the weight of the

items in the set. In the first problem the objective is to minimize total build cost plus total query cost, where
the algorithm incurs a query cost at each time 𝑡 equal to the current cover size. In the second problem, the

objective is to minimize the build cost while keeping the query cost from exceeding 𝑘 (a given parameter) at

any time. We give deterministic online algorithms for both variants, with competitive ratios of Θ(log∗ 𝑛) and
𝑘 , respectively. The latter ratio is optimal for the second variant.

CCS Concepts: • Theory of computation→ Online algorithms; • Applied computing→ Enterprise
computing infrastructures; • Information systems→ Data management systems.

Additional Key Words and Phrases: online algorithms, competitive analysis, data-structure dynamization,

log-structured merge-tree, compaction

1 Introduction
1.1 Background
A static data structure is built once to hold a fixed set of items, queried any number of times, and

then destroyed, without changing throughout its lifespan. Dynamization is a generic technique for

transforming any static container data structure into a dynamic one that supports insertions and
queries intermixed arbitrarily. (Deletions and updates can be supported as described in Section 1.3.)

The dynamic structure holds all items inserted so far in a collection of static containers. Insertions are

supported by adding new static containers and deleting old ones. Queries are supported by querying

all (current) static containers. Static containers are called components. Dynamization has been

applied in computational geometry [1, 2, 18, 22, 30], in geometric streaming algorithms [7, 31, 34],

and to design external-memory dictionaries [3, 6, 11, 52].

Bentley’s binary transform [12, 13], later called the logarithmic method [45, 51], is a widely

used example. It maintains the invariant that the number of items in each component is a distinct

power of two. Each insert operation mimics a binary increment: it destroys the components of size

∗
A conference version of this paper appeared in SODA 2021 [42]. The journal version was published in ACM Transactions

on Algorithms, https://doi.org/10.1145/3672614 .

†
Supported by NSF grants 1535929 and 1909363.

‡
Supported by Google Research Award & NSF grant 1619463.

Authors’ Contact Information: Claire Mathieu, Claire.Mathieu@irif.fr, CNRS, Paris, France; Rajmohan Rajaraman, Northeast-

ern University, Boston, Massachusetts, USA, rraj@ccs.neu.edu; Neal E. Young, University of California Riverside, Riverside,

California, USA, neal.young@ucr.edu; Arman Yousefi, Google, Los Angeles, California, USA, armany@google.com.

ar
X

iv
:2

01
1.

02
61

5v
4

 [
cs

.D
S]

 2
4

Ju
l 2

02
4

HTTPS://ORCID.ORG/0000-0002-0517-112X
HTTPS://ORCID.ORG/0009-0005-3610-9918
HTTPS://ORCID.ORG/0000-0001-8144-3345
HTTPS://ORCID.ORG/0000-0002-8760-539X
https://doi.org/10.1145/3672614
https://orcid.org/0000-0002-0517-112X
https://orcid.org/0009-0005-3610-9918
https://orcid.org/0000-0001-8144-3345
https://orcid.org/0000-0002-8760-539X

1:2 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

1

𝑡 = 1

→ 2

𝑡 = 2

→
1
2

𝑡 = 3

→ 4

𝑡 = 4

→
1
4

𝑡 = 5

→
2
4

𝑡 = 6

→

1
2

4

𝑡 = 7

→ 8

𝑡 = 8

→
1
8

𝑡 = 9

→
2
8

𝑡 = 10

→

1
2

8

𝑡 = 11

Fig. 1. Steps 1–11 of the binary transform [12, 13]. Each cell 𝑖 is a component holding 𝑖 items, where 𝑖 is a
distinct power of two. In each step one item is inserted and held in the new (top, bolded) component.

2
0, 21, 22, . . . , 2𝑗−1, where 𝑗 ≥ 0 is the minimum such that there is no component of size 2

𝑗
, and

builds one new component of size 2
𝑗
, holding the contents of the destroyed components and the

inserted item. (See Figure 1.) Meanwhile, each query operation queries all current components,

combining the results appropriately for the data type. During 𝑛 insertions, whenever an item is

incorporated into a new component, the item’s new component is at least twice as large as its

previous component, so the item is in at most log
2
𝑛 component builds. That is, the worst-case

write amplification is at most log
2
𝑛. Meanwhile, the number of components never exceeds log

2
𝑛,

so each query examines at most log
2
𝑛 components. That is, the worst-case read amplification is at

most log
2
𝑛.

Bentley and Saxe’s 𝑘-binomial transform is a variant of the binary transform [13]. It maintains 𝑘

components at all times, of respective sizes

(
𝑖1
1

)
,

(
𝑖2
2

)
, . . . ,

(𝑖𝑘
𝑘

)
such that 0 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 . (This

decomposition is guaranteed to exist and to be unique. Figure 2 gives an example.) It thus ensures

read amplification at most 𝑘 , independent of 𝑛, but its write amplification is at most (𝑘!𝑛)1/𝑘 ,
about

𝑘
𝑒
𝑛1/𝑘 for large 𝑘 . This tradeoff between worst-case read amplification and worst-case write

amplification is optimal up to lower-order terms, as is the tradeoff achieved by the binary transform

(see Section 1.4).

These worst-case guarantees on read- and write-amplification hold both for uniform inputs

(where the inserted items have roughly the same sizes, and insertions and queries occur at uniform

and balanced rates) and for non-uniform inputs. But a non-uniform input can be substantially

easier, in that it admits a solution with average write amplification (over all inserted items) and

average read amplification (over all queries) well below worst case, achieving lower total cost.

(Roughly, this is achieved by trading build cost for query cost as the read/write ratio varies. For

intuition consider a long sequence of insertions followed by a long sequence of queries.) Worst-case

dynamization analyses do not capture this. Indeed, transforms such as those above do not adapt to

non-uniformity. Their build and query costs are close to worst case even on non-uniform inputs.

We propose two new dynamization problems—Min-Sum Dynamization and 𝑘-Component Dy-
namization—that model non-uniform insertions and queries. We consider these as online problems

and use competitive analysis to measure how well algorithms for them take advantage of non-

uniformity. We introduce new algorithms that have substantially better competitive ratios than

existing algorithms.

Relevance to industrial LSM systems. Dynamization algorithms underlie standard implemen-

tations of external-memory (i.e., disk-based) ordered dictionaries, where they are called merge
(or compaction) policies [41]. Recently inserted key/value pairs are cached in RAM to the extent

possible, while older pairs are stored in immutable (static) on-disk files (the components). Each

query (if not resolved in cache) searches the current components for the queried key, using one disk

Competitive Data-Structure Dynamization 1:3

1

𝑡 = 1

→
1
1

𝑡 = 2

→ 3

𝑡 = 3

→
1
3

𝑡 = 4

→
2
3

𝑡 = 5

→ 6

𝑡 = 6

→
1
6

𝑡 = 7

→
2
6

𝑡 = 8

→
3
6

𝑡 = 9

→ 10

𝑡 = 10

→
1
10

𝑡 = 11

Fig. 2. Steps 1–11 of the 2-binomial transform [13]. At time 𝑡 the top and bottom components hold
(𝑖1
1

)
and(𝑖2

2

)
items where 0 ≤ 𝑖1 < 𝑖2 and

(𝑖1
1

)
+
(𝑖2
2

)
= 𝑡 . For example at time t = 8, 𝑖1 = 2 and 𝑖2 = 4. If 𝑖1 = 0 there is

only one component, the bottom component.

access
1
per component. The components are managed using the merge policy: periodically, the

cached pairs are flushed to disk in one batch, which is treated as an inserted item and incorporated

by building and deleting components
2
according to the policy. The build cost captures the time

building on-disk components, while the query cost captures the time responding to queries.

O’Neil et al’s seminal log-structured merge (LSM) architecture [44] (building on [47, 48]) was

one of the first to adapt dynamization to external-memory dictionaries as described above. Its

dynamization scheme can be viewed as a parameterized generalization of Bentley’s binary transform.

As the parameter varies, the tradeoff it achieves between read amplification and write amplification

is optimal (in some parameter regimes) among all external-memory structures [5, 16, 53].

Many subsequent and current industrial systems—including so-called NoSQL and NewSQL

databases—have LSM architectures. These include Google’s Bigtable [21] (and Spanner [25]), Ama-

zon’s Dynamo [27], Accumulo (by the NSA) [36], AsterixDB [4], Facebook’s Cassandra [38], HBase

and Accordion (used by Yahoo! and others) [15, 32], LevelDB [28], and RocksDB [29].

Non-uniform inputs can be particularly important in production LSM systems, where the sizes

of inserted batches can vary by orders of magnitude [15, §2] (see also [9, 10, 17]) and the query

and insertion rates can vary substantially with time. As discussed previously, such non-uniform

workloads can have optimal cost well below the worst-case cost. Industrial compaction policies do

adapt to non-uniformity, but only heuristically. Bigtable’s default compaction policy (which, like the

𝑘-binomial transform, is configured by a single parameter 𝑘 and maintains at most 𝑘 components)

is as follows: in response to each insert (cache flush), create a new component holding the inserted

items; then, if there are more than 𝑘 components, merge the 𝑖 most-recently created components

into one, where 𝑖 ≥ 2 is chosen minimally so that, for each remaining component 𝑆 , the size of 𝑆 in

bytes exceeds the total size of all components newer than 𝑆 [50]. Both the worst-case build cost

and the competitive ratio of this algorithm are suboptimal.

1.2 Problem definitions
The definitions of the two dynamization problems below model insertions and queries. The end of

the section gives generalizations that allow updates, deletions, and item expiration as implemented

(lazily) in typical LSM systems.

Recall that a set cover of a given set 𝑆 of items is a collection of subsets whose union is 𝑆 .

1
Database servers are typically configured so that RAM size is 1–3% of disk size, even as RAM and disk sizes grow according

to Moore’s law [33, p. 227]. A disk block typically holds at least thousands of items. Hence, an index for every disk component,

storing the minimum item in each disk block in the component, fits easily in RAM. Then querying any component (a

file storing its items in sorted order) for a given item requires accessing just one disk block, determined by checking the

index [33, p. 232].

2
Crucially, builds use sequential (as opposed to random) disk access. This is why these systems outperform B

+
trees on

write-heavy workloads. See [41, § 2.2.1–2.2.2] for details.

1:4 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

Definitions 1.1. An input is a sequence 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑛) of pairwise-disjoint sets of weighted
items. Each item 𝑥 ∈ 𝐼𝑡 is said to be “inserted at time 𝑡”. The weight of each item 𝑥 , denoted

wt(𝑥), must be non-negative.

A solution is a sequence C = (C1, C2, . . . , C𝑛), where each C𝑡 is a set cover for the items inserted by

time 𝑡 . That is,
⋃

𝑆∈C𝑡 𝑆 = 𝑈𝑡 , where𝑈𝑡 =
⋃𝑡

𝑖=1 𝐼𝑖 . The sets in each C𝑡 are called components.
The build cost at time 𝑡 is the total weight in new sets, that is

∑
𝑆∈C𝑡 \C𝑡−1 wt(𝑆), where wt(𝑆)

denotes

∑
𝑥∈𝑆 wt(𝑥). (For time 𝑡 = 1 we define C0 to be the empty set.)

The query cost at time 𝑡 is |C𝑡 |, that is, the number of components in the current cover, C𝑡 .
Given an input, the objective of the Min-Sum Dynamization problem is to find a solution of

minimum total cost (the sum of all build costs and query costs over time).

The objective of the 𝑘-Component Dynamization problem is to find a solution having minimum

total build cost, among solutions with maximum query cost 𝑘 (that is, max𝑡 |C𝑡 | ≤ 𝑘).
An algorithm is online if for every input 𝐼 it outputs a solution C such that at each time 𝑡 its cover

C𝑡 is independent of 𝐼𝑡+1, 𝐼𝑡+2, . . . , 𝐼𝑛 , all build costs wt𝑡 ′ (𝑆) at times 𝑡 ′ > 𝑡 , and 𝑛.
An algorithm’s competitive ratio, 𝑐∗ (𝑚), is the supremum, over all inputs with 𝑚 non-empty

insertions, of the cost of the algorithm’s solution divided by the optimum cost for the input.

An algorithm is 𝑐 (𝑚)-competitive if its competitive ratio 𝑐∗ (𝑚) is at most 𝑐 (𝑚) for all𝑚.

Remarks for Min-Sum Dynamization. The definition of total read cost (as

∑𝑛
𝑡=1 |C𝑡 |) models, a-

priori, exactly one query per insert. This keeps the problem statement relatively simple. However,

applications can have any number of queries per insert. This can be modeled by reduction. To

model consecutive queries with no intervening insertions, separate the consecutive queries by

artificial insertions with 𝐼𝑡 = ∅ (inserting an empty set). To model consecutive insertions with no

intervening query, aggregate the consecutive insertions into a single insertion.

Note that uniformly scaling item weights changes build cost relative to query cost. In LSM

applications, each unit of query cost represents the time for one random-access disk read, whereas

each unit of build cost represents the (much smaller, amortized) time per byte during sequential
disk reads and writes. To model these costs, take the weight of each item 𝑥 to be its size in bytes,

times the time per byte for a sequential disk read and write, divided by the (much larger) time for

one random-access disk read.

Remark for 𝑘-Component Dynamization. Among well-studied problems, Dynamic TCP Acknowl-
edgment [20, 35], a generalization of the classic ski-rental problem, is perhaps technically closest to

𝑘-Component Dynamization. TCP Acknowledgment can be viewed as a continuous-time variant of

2-Component Dynamization in which building a new component that contains all items inserted

so far (corresponding to a “TCP-ack”) has cost 1 (regardless of the component weight).

Deletions, updates, and expiration. The problems as defined above model queries and insertions.

Next we extend the definitions to allow modelling updates, deletions, and item expiration as they

typically happen (lazily) in LSM dictionaries.

In this context we assume each item is a weighted key/value pair, timestamped by insertion time,

and possibly having an expiration time. (The item weight is typically proportional to the size in

bytes of the key/value pair.) Updates and deletions are lazy (“out of place” [41, §2], [40]): update
just inserts an item with the given key/value pair (as usual), while delete inserts an item for the

given key with a so-called tombstone (a.k.a. antimatter) value. Multiple items with the same key

may be stored (possibly in multiple components), but only the newest matters: a query, given a key,

returns the newest item inserted for that key, or “none” if that item is a tombstone or has expired.

When a component 𝑆 is built, it is “garbage collected”: for each key, among the items in 𝑆 with that

key, only the newest is written to disk—all others are discarded.

Competitive Data-Structure Dynamization 1:5

To model this, we define three generalizations of the problems. To keep the definitions clean, in

each variant the input sets must still be disjoint and the current cover must still contain all items

inserted so far. To model updates, deletions, and expirations we only redefine the build cost.

Definitions 1.2. Decreasing Weights. Each item 𝑥 ∈ 𝐼𝑡 has weights wt𝑡 (𝑥) ≥ wt𝑡+1 (𝑥) ≥ · · · ≥
wt𝑛 (𝑥). The cost of building a component 𝑆 ⊆ 𝑈𝑡 at time 𝑡 is redefined as wt𝑡 (𝑆) =∑

𝑥∈𝑆 wt𝑡 (𝑥). We use this variant as a stepping stone to the LSM variant, next.

LSM. Each item is a timestamped key/value pair with an expiration time. Given a subset 𝑆 of items,

the set of non-redundant items in 𝑆 , denoted nonred(𝑆), consists of those that have no newer
item in 𝑆 with the same key. The cost of building a component 𝑆 at time 𝑡 , denoted wt𝑡 (𝑆),
is redefined as the sum, over all non-redundant items 𝑥 in 𝑆 , of the item weight wt(𝑥), or
the weight of the tombstone item for 𝑥 if 𝑥 has expired. The latter weight must be at most

wt(𝑥). Items with the same key may have different weights, must have distinct timestamps,

and can occur in different components. For any two items 𝑥 ∈ 𝐼𝑡 and 𝑥 ′ ∈ 𝐼𝑡 ′ with 𝑡 < 𝑡 ′, the
timestamp of 𝑥 must be less than the timestamp of 𝑥 ′. This variant applies to LSM systems.

3

General. Instead of weighting the items, build costs are specified directly for sets. At each time 𝑡 a

build-cost function wt𝑡 : 2𝑈𝑡 → R+ is revealed (along with 𝐼𝑡), directly specifying the build

cost wt𝑡 (𝑆) for every possible component 𝑆 ⊆ 𝑈𝑡 . The build-cost function must obey the

following restrictions, for all times 𝑖 ≤ 𝑡 and sets 𝑆, 𝑆 ′ ⊆ 𝑈𝑡 :

(R1) sub-additivity: wt𝑡 (𝑆 ∪ 𝑆 ′) ≤ wt𝑡 (𝑆) + wt𝑡 (𝑆 ′). (The cost of building a component

holding the union of two sets is at most the combined cost of building two components

that hold the respective sets.)

(R2) suffix monotonicity: if 𝑆 ≠ 𝑈𝑡 , then wt𝑡 (𝑆 \𝑈𝑖) ≤ wt𝑡 (𝑆), (The cost of building a
component holding a set 𝑆 of items is at least the cost of building a component holding

just those items in 𝑆 that were inserted after time 𝑖 . The exception for 𝑆 = 𝑈𝑡 allows

modeling full removal of tombstone items during full merges.)

(R3) temporal monotonicity: wt𝑖 (𝑆) ≥ wt𝑡 (𝑆) (The cost of building a component to

hold 𝑆 does not increase over time. Note, for example, that in the LSM model item

expirations can cause the cost to decrease over time.)

We chose Restrictions (R1)–(R3) so that the resulting problem has several competing properties:

it should be relatively simple, sufficiently general to model practical LSM systems, and sufficiently

restricted to allow competitive online algorithms. The build costs implicit in the LSM and Decreasing

Weights variants do obey (R1)–(R3).
4
The restrictions would also hold, for example, if each item

had a fixed weight and wt𝑡 (𝑆) = max𝑥∈𝑆 wt(𝑥).

1.3 Statement of results
Min-Sum Dynamization. Recall that the iterated logarithm (base 𝑒) is the slowly growing function

defined inductively by log
∗
𝑒𝑚 = 1 + log∗𝑒 log𝑒𝑚, with the base case log

∗
𝑒𝑚 = 0 for 𝑚 ≤ 1. (Our

analysis will use base

√
2 instead of 𝑒 . Note that log∗√

2

𝑚 = Θ(log∗𝑒𝑚), so inside O-notation the base

is omitted.)

Theorem 2.1 (Section 2). For Min-Sum Dynamization, the online algorithm Adaptive-Binary
(Figure 3) has competitive ratio Θ(log∗𝑚), where𝑚 ≤ 𝑛 is the number of non-empty insertions.

3
LSM systems delete tombstone items during full merges (i.e., when building a component 𝑆 = 𝑈𝑡 at time 𝑡). This is not

captured by the LSM model here, but is captured by the following general model. See Section 5.2.

4
The LSM build cost obeys (R1) because nonred(𝑆∪𝑆 ′) ⊆ nonred(𝑆) ∪nonred(𝑆) ′ . It obeys (R2) because nonred(𝑆 \𝑈𝑖) ⊆
nonred(𝑆) . It obeys (R3) because the tombstone weight for each item 𝑥 is at most wt(𝑥) .

1:6 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

Roughly speaking, every 2
𝑗
time steps (𝑗 ∈ {0, 1, 2, . . .}), the algorithm merges all components of

weight 2
𝑗
or less into one. Figure 5 illustrates one execution of the algorithm. The bound in the

theorem is tight for the algorithm.

In contrast, consider the naive adaptation of Bentley’s binary transform (i.e., treat each insertion

𝐼𝑡 as a size-1 item, then apply the transform). On inputs with wt(𝐼𝑡) = 1 for all 𝑡 the algorithms

produce the same (optimal) solution. But, as we show in Lemma A.1 in the appendix, the competitive

ratio of the naive adaptation is Ω(log𝑛).
Min-Sum Dynamization is a special case of Set Cover with Service Costs, for which Buchbinder

et al. give a randomized online algorithm [19]. For Min-Sum Dynamization, their bound on the

algorithm’s competitive ratio simplifies to 𝑂 (log2 𝑛).

𝐾-Component Dynamization and its generalizations.

Theorem 3.1 (Section 3.1). For 𝑘-Component Dynamization (and consequently for its generaliza-
tions) no deterministic online algorithm has ratio competitive ratio less than 𝑘 .

Theorem 3.2 (Section 3.2). For 𝑘-Component Dynamization with decreasing weights (and plain
𝑘-Component Dynamization) the deterministic online algorithm in Figure 8 is 𝑘-competitive.

For comparison, consider the naive adaptation of Bentley and Saxe’s 𝑘-binomial transform to

𝑘-Component Dynamization (treat each insertion 𝐼𝑡 as one size-1 item, then apply the transform).

On inputs withwt(𝐼𝑡) = 1 for all 𝑡 , the two algorithms produce essentially the same optimal solution.

But, as we show in Lemma A.2 in the appendix, the competitive ratio of the naive adaptation is

Ω(𝑘𝑛1/𝑘) for any 𝑘 ≥ 2.

Bigtable’s default algorithm (Section 1.1) solves 𝑘-Component Dynamization, but its competitive

ratio is Ω(𝑛). For example, with 𝑘 = 2, given an instance withwt(𝐼1) = 3,wt(𝐼2) = 1, andwt(𝐼𝑡) = 0

for 𝑡 ≥ 3, it pays 𝑛 + 2, while the optimum is 4. (In fact, the algorithm is memoryless — each

C𝑡 is determined by C𝑡−1 and 𝐼𝑡 . No deterministic memoryless algorithm has competitive ratio

independent of 𝑛.) Even for uniform instances (wt(𝐼𝑡) = 1 for all 𝑡), Bigtable’s default incurs cost

quadratic in 𝑛, whereas the optimum is Θ(𝑘𝑛1+1/𝑘).
Bentley and Saxe showed that their solutions were optimal (for uniform inputs) among a restricted

class of solutions that they called arboreal transforms [13]. Here we call such solutions newest-first:

Definition 1.6. A solution C is newest-first if at each time 𝑡 , if 𝐼𝑡 = ∅ it creates no new components,

and otherwise it creates one new component, by merging 𝐼𝑡 with some 𝑖 ≥ 0 newest components

into a single component (destroying the merged components). Likewise, C is lightest-first if, at each
time 𝑡 with 𝐼𝑡 ≠ ∅, it merges 𝐼𝑡 with some 𝑖 ≥ 0 lightest components. An algorithm is newest-first

(lightest-first) if it produces only newest-first (lightest-first) solutions.

TheMin-SumDynamization algorithmAdaptive-Binary (Figure 3) is lightest-first. The𝑘-Component

Dynamization algorithm Greedy-Dual (Figure 8) is newest-first. In a newest-first solution, every

cover C𝑡 partitions the set𝑈𝑡 of current items into components of the form

⋃𝑗

ℎ=𝑖
𝐼ℎ for some 𝑖, 𝑗 .

Any newest-first algorithm for the decreasing-weights variant of either problem can be “boot-

strapped” into an equally good algorithm for the LSM variant:

Theorem 3.5 (Section 3.3). Any newest-first online algorithm A for 𝑘-Component (or Min-Sum)
dynamization with decreasing weights can be converted into an equally competitive online algorithm
A′ for the LSM variant.

With Theorem 3.2 this gives the following corollary:

Corollary 1.8 (Section 3.3). There is a deterministic online algorithm for LSM 𝑘-Component
Dynamization with competitive ratio 𝑘 .

Competitive Data-Structure Dynamization 1:7

algorithm Adaptive-Binary(𝐼1, 𝐼2, . . . , 𝐼𝑛) —for Min-Sum Dynamization

1. maintain a cover (collection of components), initially empty
2. for each time 𝑡 = 1, 2, . . . , 𝑛:

2.1. if 𝐼𝑡 ≠ ∅: add 𝐼𝑡 as a new component
2.2. let 𝑗 ≥ 0 be the maximum integer such that 𝑡 is an integer multiple of 2𝑗 –well defined as 20 = 1

2.3. if there are multiple components 𝑆 such that wt(𝑆) ≤ 2
𝑗 :

2.3.1. : merge them into one new component

Fig. 3. A Θ(log∗𝑚)-competitive algorithm for Min-Sum Dynamization (Theorem 2.1).

Finally we give an algorithm for the general variant:

Theorem 3.9 (Section 3.4). For general 𝑘-Component Dynamization, the deterministic online
algorithm B𝑘 in Figure 9 is 𝑘-competitive.

The algorithm B𝑘 partitions the input sequence into phases. Before the start of each phase, it

has just one component in its cover, called the current “root”, containing all items inserted before

the start of the phase. During the phase, B𝑘 recursively simulates B𝑘−1 to handle the insertions

occurring during the phase, and uses the cover that consists of the root component together with

the (at most 𝑘 − 1) components currently used by B𝑘−1. At the end of the phase, B𝑘 does a full merge
— it merges all components into one new component, which becomes the new root. It extends the

phase maximally subject to the constraint that the cost incurred by B𝑘−1 during the phase does not
exceed 𝑘 − 1 times the cost of the full merge that ends the phase.

1.4 Properties of optimal offline solutions
Bentley and Saxe showed that, among newest-first solutions (which they called arboreal), their
various transforms were near-optimal for uniform inputs [12, 13]. Mehlhorn showed (also for

uniform inputs) that the best newest-first solutions have cost at most a constant times optimum [43].

We generalize and strengthen Mehlhorn’s result:

Theorem 4.1 (Section 4). Every instance of 𝑘-Component or Min-Sum Dynamization has an
optimal solution that is newest-first and lightest-first.

One consequence is that Bentley and Saxe’s transforms give optimal solutions (up to lower-order

terms) for uniform inputs. Another is that, for Min-Sum and 𝑘-Component Dynamization, optimal

solutions can be computed in time 𝑂 (𝑛3) and 𝑂 (𝑘𝑛3), respectively, because optimal newest-first

solutions can be computed in these time bounds via natural dynamic programs.

The body of the paper gives the proofs of Theorems 2.1–4.1.

2 Min-Sum Dynamization (Theorem 2.1)
Theorem 2.1. For Min-Sum Dynamization, the online algorithm Adaptive-Binary (Figure 3) has

competitive ratio Θ(log∗𝑚), where𝑚 ≤ 𝑛 is the number of non-empty insertions.

We prove the theorem in two parts:

(i) The competitive ratio is 𝑂 (log∗𝑚) (proof in Section 2.1).

(ii) The competitive ratio is Ω(log∗𝑚) (proof in Section 2.2).

1:8 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

2.1 Part (i): the competitive ratio is 𝑂 (log∗𝑚)
Fix an input 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑛) with𝑚 ≤ 𝑛 non-empty sets. Let C be the algorithm’s solution. Let

C∗ be an optimal solution, of cost OPT. For any time 𝑡 , call the 2𝑗 chosen in Line 2.2 the capacity
𝜇 (𝑡) of time 𝑡 , and let 𝑆𝑡 be the newly created component (if any) in Line 2.3.

It is convenient to over-count the algorithm’s build cost as follows. In Line 2.3, if there is exactly

one component 𝑆 with wt(𝑆) ≤ 2
𝑗
, the algorithm as stated does not change the current cover, but

we pretend for the analysis that it does — specifically, that it destroys and rebuilds 𝑆 , paying its

build cost wt(𝑆) again at time 𝑡 . This allows a clean statement of the next lemma. In the remainder

of the proof, the “build cost” of the algorithm refers to this over-counted build cost.

We first bound the total query cost,

∑
𝑡 |C𝑡 |, of C.

Lemma 2.2. The total query cost of C is at most twice the (over-counted) build cost of C, plus OPT.

Proof. Consider the components with weight less than 1. By inspection of the algorithm each

cover C𝑡 has at most one such component — the component 𝑆𝑡 created at time 𝑡 . Therefore, the

query cost from the components with weight less than 1 is at most 𝑛.

It remains to consider the components with weight at least 1. Let 𝑆 be any component in C of

weight wt(𝑆) ≥ 1. Each new occurrence of 𝑆 in C contributes at most 2wt(𝑆) to C’s query cost.

Indeed, let 2
𝑗 ≥ wt(𝑆) be the next larger power of 2. Times with capacity 2

𝑗
or more occur every

2
𝑗
time steps. So, after C creates 𝑆 , C destroys 𝑆 within 2

𝑗 ≤ 2wt(𝑆) time steps; note that we are

using here the over-counted build cost. So C’s query cost from such components is at most twice

the build cost of C.
Thus, the total query cost from all components is at most twice the build cost of C plus 𝑛. The

lemma follows since the query cost of C∗ is at least 𝑛, so 𝑛 ≤ OPT. □

Define Δ to be the maximum number of components merged by the algorithm in response to

any query. Note that Δ ≤ 𝑚 simply because there are at most𝑚 components at any given time in

C. (Only Line 2.1 increases the number of components, and it does so only if 𝐼𝑡 is non-empty.) The

remainder of the section bounds the build cost of C by 𝑂 (log∗ (Δ)OPT). By Lemma 2.2, this will

imply prove Part (i) of the theorem.

The total weight of all components 𝐼𝑡 that the algorithm creates in Line 2.1 is

∑
𝑡 wt(𝐼𝑡), which is

at most OPT because every 𝑥 ∈ 𝐼𝑡 is in at least one new component in C∗ (at time 𝑡). To finish, we

bound the (over-counted) build cost of the components that the algorithm builds in Line 2.3, i.e.,∑
𝑡 wt(𝑆𝑡).

Observation 2.3. The difference between any two distinct times 𝑡 and 𝑡 ′ is at leastmin{𝜇 (𝑡), 𝜇 (𝑡 ′)}.

(This holds because 𝑡 and 𝑡 ′ are distinct integer multiples of min{𝜇 (𝑡), 𝜇 (𝑡 ′)}. See Figure 4.)

Charging scheme. For each time 𝑡 at which Line 2.3 creates a new component 𝑆𝑡 , have 𝑆𝑡 charge
to each item 𝑥 ∈ 𝑆𝑡 the weight wt(𝑥) of 𝑥 . Have 𝑥 in turn charge wt(𝑥) to each optimal component

𝑆∗ ∈ C∗𝑡 that contains 𝑥 at time 𝑡 . The entire build cost

∑
𝑡 wt(𝑆𝑡) is charged to components in C∗.

To finish, we show that each component 𝑆∗ in C∗ is charged 𝑂 (log∗ Δ) times 𝑆∗’s contribution (via

its build and query costs) to OPT.
Throughout, given integer times 𝑡 and 𝑡 ′, let [𝑡, 𝑡 ′] denote the (time) interval {𝑡, 𝑡 + 1, . . . , 𝑡 ′}.

(This is non-standard notation.)

Fix any such 𝑆∗. Define [𝑡1, 𝑡2] to be the interval of 𝑆∗ in C∗. That is, C∗ adds 𝑆∗ to its cover

at time 𝑡1, where it remains through time 𝑡2, so its contribution to OPT is 𝑡2 − 𝑡1 + 1 + wt(𝑆∗).
At each (integer) time 𝑡 ∈ [𝑡1, 𝑡2], component 𝑆∗ is charged wt(𝑆∗ ∩ 𝑆𝑡). To finish, we show∑𝑡2

𝑡=𝑡1
wt(𝑆∗ ∩ 𝑆𝑡) = 𝑂 (𝑡2 − 𝑡1 + log∗ (Δ) wt(𝑆∗)).

Competitive Data-Structure Dynamization 1:9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

4

8

16

𝑡

𝜇
(𝑡
)

Fig. 4. The capacities 𝜇 (𝑡) as a function of 𝑡 .

By Observation 2.3, there can be at most one time 𝑡 ′ ∈ [𝑡1, 𝑡2] with capacity 𝜇 (𝑡 ′) > 𝑡2 − 𝑡1 + 1. If
there is such a time 𝑡 ′, the charge received then, i.e. wt(𝑆∗ ∩ 𝑆𝑡 ′), is at most wt(𝑆∗). To finish, we

bound the charges at the times 𝑡 ∈ [𝑡1, 𝑡2] \ {𝑡 ′}, with 𝜇 (𝑡) ≤ 𝑡2 − 𝑡1 + 1.

Definition 2.4 (dominant). Classify each such time 𝑡 and C’s component 𝑆𝑡 as dominant if the ca-
pacity 𝜇 (𝑡) strictly exceeds the capacity 𝜇 (𝑖) of every earlier time 𝑖 ∈ [𝑡1, 𝑡 −1] (𝜇 (𝑡) > max

𝑡−1
𝑖=𝑡1

𝜇 (𝑖))
in 𝑆∗’s interval [𝑡1, 𝑡2]. Otherwise 𝑡 and 𝑆𝑡 are non-dominant.

Lemma 2.5 (non-dominant times). The net charge to 𝑆∗ at non-dominant times is at most 𝑡2 − 𝑡1.

Proof. Let 𝜏1 be any dominant time. Let 𝜏2 > 𝜏1 be the next larger dominant time step, if any,

else 𝑡2 + 1. Consider the charge to 𝑆∗ during the open interval (𝜏1, 𝜏2). We show that this charge is

at most 𝜏2 − 𝜏1 − 1.
Component 𝑆∗ is built at time 𝑡1 ≤ 𝜏1, so 𝑆∗ ⊆ 𝑈𝜏1 . At time 𝜏1, every item 𝑥 that can charge

𝑆∗ (that is, 𝑥 ∈ 𝑆∗) is in some component 𝑆 in C𝜏1 . By the definition of dominant, each time in

𝑡 ∈ (𝜏1, 𝜏2) has capacity 𝜇 (𝑡) ≤ 𝜇 (𝜏1), since otherwise 𝜏2 would not be the next dominant time.

So, the components 𝑆 in C𝜏1 that have weight wt(𝑆) > 𝜇 (𝜏1) remain unchanged in C throughout

(𝜏1, 𝜏2), and the items in them do not charge 𝑆∗ during (𝜏1, 𝜏2). So we need only consider items in

components 𝑆 in C𝜏1 with wt(𝑆) ≤ 𝜇 (𝜏1). Assume there are such components. By inspection of the

algorithm, there can only be one: the component 𝑆𝜏1 built at time 𝜏1. All charges in (𝜏1, 𝜏2) come

from items 𝑥 ∈ 𝑆𝜏1 ∩ 𝑆∗.
Let 𝜏1 = 𝑡

′
1
< 𝑡 ′

2
< · · · < 𝑡 ′ℓ be the times in [𝜏1, 𝜏2) when these items are put in a new component.

These are the times in (𝜏1, 𝜏2) when 𝑆∗ is charged, and, at each, the charge is wt(𝑆∗ ∩𝑆𝜏1) ≤ wt(𝑆𝜏1),
so the total charge to 𝑆∗ during (𝜏1, 𝜏2) is at most (ℓ − 1) wt(𝑆𝜏1).
At each time 𝑡 ′𝑖 with 𝑖 ≥ 2 the previous component 𝑆𝑡 ′

𝑖−1
, of weight at least wt(𝑆𝜏1), is merged. So

each time 𝑡 ′𝑖 has capacity 𝜇 (𝑡 ′𝑖) ≥ wt(𝑆𝜏1). By Observation 2.3, the difference between each time 𝑡 ′𝑖
and the next 𝑡 ′𝑖+1 is at least wt(𝑆𝜏1). So (ℓ − 1) wt(𝑆𝜏1) ≤ 𝑡 ′ℓ − 𝑡 ′1 ≤ 𝜏2 − 𝜏1 − 1.

By the two previous paragraphs the charge to 𝑆∗ during (𝜏1, 𝜏2) is at most 𝜏2 − 𝜏1 − 1. Summing

over the dominant times 𝜏1 in [𝑡1, 𝑡2] proves the lemma. □

Let 𝐷 be the set of dominant times. For the rest of the proof all times that we consider are

dominant. Note that all times that are congested or uncongested (as defined next) are dominant.

Definition 2.6 (congestion). For any time 𝑡 ∈ 𝐷 and component 𝑆𝑡 , define the congestion of 𝑡

and 𝑆𝑡 to be wt(𝑆𝑡 ∩ 𝑆∗)/𝜇 (𝑡), the amount 𝑆𝑡 charges 𝑆
∗
, divided by the capacity 𝜇 (𝑡). Call 𝑡 and

1:10 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

𝑆𝑡 congested if this congestion exceeds 𝜅, and uncongested otherwise (𝜅 > 0 is a constant that is

specified later).

Lemma 2.7 (uncongested times). The total charge to 𝑆∗ at uncongested times is 𝑂 (𝑡2 − 𝑡1).

Proof. The charge to 𝑆∗ at any uncongested time 𝑡 is at most 𝜅𝜇 (𝑡), so the total charge to C∗
during such times is at most 𝜅

∑
𝑡 ∈𝐷 𝜇 (𝑡). By definition of dominant, the capacity 𝜇 (𝑡) for each

𝑡 ∈ 𝐷 is a distinct power of 2 no larger than 𝑡2 − 𝑡1 + 1. So
∑

𝑡 ∈𝐷 𝜇 (𝑡) is at most 2(𝑡2 − 𝑡1 + 1), and
the total charge to C∗ during uncongested times is 𝑂 (𝑡2 − 𝑡1). □

Lemma 2.8 (congested times). The total charge to 𝑆∗ at congested times is 𝑂 (wt(𝑆∗) log∗ Δ).

Proof. Let 𝑍 denote the set of congested times. For each item 𝑥 ∈ 𝑆∗, let𝑊 (𝑥) be the collection
of congested components that contain 𝑥 and charge 𝑆∗. The total charge to 𝑆∗ at congested times is∑

𝑥∈𝑆∗ |𝑊 (𝑥) |wt(𝑥).
To bound this, we use a random experiment that starts by choosing a random item𝑋 in 𝑆∗, where

each item 𝑥 has probability proportional to wt(𝑥) of being chosen: Pr[𝑋 = 𝑥] = wt(𝑥)/wt(𝑆∗).
We will show that E𝑋 [|𝑊 (𝑋) |] is 𝑂 (log∗ Δ). Since E𝑋 [|𝑊 (𝑋) |] =

∑
𝑥∈𝑆∗ |𝑊 (𝑥) |wt(𝑥)/wt(𝑆∗),

this will imply that the total charge is 𝑂 (log∗ Δ) wt(𝑆∗), proving the lemma.

The merge forest for 𝑆∗. Define the following merge forest. There is a leaf {𝑥} for each item

𝑥 ∈ 𝑆∗. There is a non-leaf node 𝑆𝑡 for each congested component 𝑆𝑡 . The parent of each leaf {𝑥}
is the first congested component 𝑆𝑡 that contains 𝑥 (that is, 𝑡 = min{𝑖 ∈ 𝑍 : 𝑥 ∈ 𝑆𝑖), if any. The
parent of each node 𝑆𝑡 is the next congested component 𝑆𝑡 ′ that contains all items in 𝑆𝑡 (that is,

𝑡 ′ = min{𝑖 ∈ 𝑍 : 𝑖 > 𝑡, 𝑆𝑡 ⊆ 𝑆𝑖 }), if any. Parentless nodes are roots.
The random walk starts at the root of the tree that holds leaf {𝑋 }, then steps along the path

to that leaf in the tree. In this way it traces (in reverse) the sequence𝑊 (𝑋) = {𝑆𝑖 : 𝑋 ∈ 𝑆𝑖 } of
congested components that 𝑋 entered during [𝑡1, 𝑡2]. The number of steps is |𝑊 (𝑋) |. To finish, we

show that the expected number of steps is 𝑂 (log∗ Δ).
Each non-leaf node 𝑆𝑡 in the tree has congestion wt(𝑆𝑡 ∩ 𝑆∗)/𝜇 (𝑡), which is at least 𝜅 and at

most Δ. For the proof, define the congestion of each leaf 𝑥 to be 2
Δ
. To finish, we argue that with

each step of the random walk, the iterated logarithm of the current node’s congestion increases in
expectation by at least 1/5.

A step in the random walk. Fix any non-leaf node 𝑆𝑡 . Let 𝛼𝑡 = wt(𝑆𝑡 ∩ 𝑆∗)/𝜇 (𝑡) be its congestion.
The walk visits 𝑆𝑡 with probability wt(𝑆∗ ∩ 𝑆𝑡)/wt(𝑆∗). Condition on this event (that is, 𝑋 ∈ 𝑆𝑡).
Let random variable 𝛼 ′ be the congestion of the child of 𝑆𝑡 next visited.

Sublemma 1. For any 𝛽 ∈ [𝛼𝑡 , 2Δ), Pr[𝛼 ′ > 𝛽 |𝑋 ∈ 𝑆𝑡] is at least 1 − 𝛼−1𝑡 (2 + log2 𝛽).

Proof. Consider any child 𝑆𝑡 ′ of 𝑆𝑡 with 𝛼𝑡 ′ ≤ 𝛽 . We will bound the probability that 𝑆𝑡 ′ is visited

next (i.e., 𝑋 ∈ 𝑆𝑡 ′). Node 𝑆𝑡 ′ is not a leaf, as 𝛼𝑡 ′ < 2
Δ
. Define 𝑗 (𝑡 ′) so that its capacity 𝜇 (𝑡 ′) equals

𝜇 (𝑡)/2𝑗 (𝑡 ′) . (That is, 𝑗 (𝑡 ′) = log
2
(𝜇 (𝑡)/𝜇 (𝑡 ′)).) The definitions and 𝛼𝑡 ′ ≤ 𝛽 imply

Pr[𝑋 ∈ 𝑆𝑡 ′ |𝑋 ∈ 𝑆𝑡] =
wt(𝑆𝑡 ′ ∩ 𝑆∗)
wt(𝑆𝑡 ∩ 𝑆∗)

=
𝛼𝑡 ′ 𝜇 (𝑡 ′)
𝛼𝑡 𝜇 (𝑡)

≤ 𝛽 𝜇 (𝑡)/2𝑗 (𝑡 ′)
𝛼𝑡 𝜇 (𝑡)

=
𝛽

𝛼𝑡 2
𝑗 (𝑡 ′) . (1)

Also, the algorithm merged a component containing 𝑆𝑡 ′ at time 𝑡 , so wt(𝑆𝑡 ′) ≤ 𝜇 (𝑡), so

Pr[𝑋 ∈ 𝑆𝑡 ′ |𝑋 ∈ 𝑆𝑡] =
wt(𝑆𝑡 ′ ∩ 𝑆∗)
wt(𝑆𝑡 ∩ 𝑆∗)

=
wt(𝑆𝑡 ′ ∩ 𝑆∗)
𝛼𝑡 𝜇 (𝑡)

≤ wt(𝑆𝑡 ′)
𝛼𝑡 𝜇 (𝑡)

≤ 1

𝛼𝑡
. (2)

Combining Bounds (1) and (2), Pr[𝑋 ∈ 𝑆𝑡 ′ |𝑋 ∈ 𝑆𝑡] is at most 𝛼−1𝑡 min(1, 𝛽 2− 𝑗 (𝑡 ′)). Summing this

bound over all children 𝑆𝑡 ′ of 𝑆𝑡 with congestion 𝛼𝑡 ′ ≤ 𝛽 , and using that each 𝑗 (𝑡 ′) is a distinct

Competitive Data-Structure Dynamization 1:11

positive integer, the probability that 𝛼 ′ ≤ 𝛽 is at most

𝛼−1𝑡

∞∑︁
𝑗=1

min(1, 𝛽 2− 𝑗) ≤ 𝛼−1𝑡

∫ ∞

0

min(1, 𝛽 2− 𝑗) 𝑑 𝑗 = 𝛼−1𝑡 (log2 (𝛽) + 1/ln 2)

(splitting the integral at 𝑗 = log
2
𝛽). The sublemma follows from 1/ln 2 ≤ 2. □

Next we lower-bound the expected increase in the log
∗
of the congestion in this step. We use

√
2

as the base of the iterated log.
5
Then log

∗ (2𝛼𝑡 /2) = 1 + log∗ 𝛼𝑡 , so, conditioned on 𝑋 ∈ 𝑆𝑡 ,

E[log∗ 𝛼 ′] ≥ Pr[𝛼 ′ ≥ 𝛼𝑡] log∗ 𝛼𝑡 + Pr[𝛼 ′ ≥ 2
𝛼𝑡 /2] .

Bounding the two probabilities above via Sublemma 1 with 𝛽 = 𝛼𝑡 and 𝛽 = 2
𝛼𝑡 /2

, the right-hand

side above is

≥ [1 − 𝛼−1𝑡 (2 + log2 𝛼𝑡)] log∗ 𝛼𝑡 + [1 − 𝛼−1𝑡 (2 + 𝛼𝑡/2)]
= log

∗ (𝛼𝑡) + 1/2 − [2 + (2 + log2 𝛼𝑡) log∗ 𝛼𝑡]/𝛼𝑡
≥ log

∗ (𝛼𝑡) + 1/2 − 3/10 = log
∗ (𝛼𝑡) + 1/5,

where the last inequality follows from 𝛼𝑡 ≥ 𝜅 (𝑡 is congested) and by setting 𝜅 ≥ 64. It follows

that 𝐸 [log∗ 𝛼 ′ − log∗ 𝛼𝑡 |𝑋 ∈ 𝑆𝑡] ≥ 1/5. That is, in each step, the expected increase in the iterated

logarithm of the congestion is at least 1/5.

Let random variable 𝐿 = |𝑊 (𝑋) | be the length of the random walk. Let random variable 𝛼 ′𝑖 be
the congestion of the 𝑖th node on the walk. By the previous section, for each 𝑖 , given that 𝑖 < 𝐿,

E[log∗ 𝛼 ′𝑖+1 − log
∗ 𝛼 ′𝑖 | 𝛼 ′𝑖] ≥ 1/5. It follows by Wald’s equation (see [14, p. 370] and [54, Lemma 4.1])

that E[log∗ 𝛼 ′
𝐿
− log∗ 𝛼 ′

1
] ≥ E[𝐿]/5. Since 𝛼 ′

𝐿
= 2

Δ
and log

∗ 𝛼 ′
1
≥ 0, we have E[log∗ 𝛼 ′

𝐿
− log∗ 𝛼 ′

1
] ≤

log
∗
2
Δ
. It follows that E[𝐿] ≤ 5 log

∗
2
Δ
. Recall that the base of the iterated logarithm is

√
2; so,

log
∗
2
Δ = 2 + log∗ Δ, yielding E[𝐿] ≤ 10 + 5 log∗ Δ. That is, the expected length of the random walk

is 𝑂 (log∗ Δ). By the discussion at the start of the proof, this implies the lemma. □

To recap, for each component 𝑆𝑡 built by the algorithm, the (over-counted) build cost is charged

item by item to those components in the optimal solution C∗ that currently contain the item. In

this way, the algorithm’s total over-counted build cost

∑
𝑡 wt(𝑆𝑡) is charged to components in

C∗. By Lemmas 2.5–2.8, each component 𝑆∗ in the optimal solution C∗ is charged 𝑂 (1) times its

contribution 𝑡2 − 𝑡1 to the query cost of C∗ plus (in expectation) 𝑂 (log∗𝑚) times its contribution

wt(𝑆∗) to the build cost of C∗. It follows that the expected build cost incurred by the algorithm is

𝑂 (log∗𝑚) times the cost of C∗.
By Lemma 2.2, the total query cost incurred by the algorithm is at most twice the algorithm’s

over-counted build cost plus the cost of C∗. It follows that the total (build and query) cost incurred

by the algorithm is 𝑂 (log∗ (𝑚)) times the cost of C∗. That is, the competitive ratio is 𝑂 (log∗𝑚),
proving Part (i) of Theorem 2.1.

6

2.2 Part (ii): the competitive ratio is Ω(log∗𝑚)
Lemma 2.9. The competitive ratio of the Adaptive-Binary algorithm (Figure 3) is Ω(log∗𝑚).

Proof. We will show a ratio of Ω(log∗𝑚) on a particular class of inputs, one for each integer

𝐷 ≥ 0. (Figure 5 describes the input 𝐼 for 𝐷 = 2 and the resulting merge tree, of depth 𝐷 + 1.)

1:12 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

2
18

2
17

2
15

2
9 · · · 2

9

2
15

2
10 · · · 2

10

2
15

2
11 · · · 2

11

2
15

2
12 · · · 2

12

2
17

2
16

2
13 · · · 2

13

2
16

2
14

2
14

2
14

2
14

2
3

2
3

2
4

2
5

2
6
leaves

Fig. 5. The “merge tree” for an execution of the Adaptive-Binary algorithm (Figure 3). The input sequence
starts with𝑚 = 132 inserts 𝐼1, 𝐼2, . . . , 𝐼132 — one for each leaf, of weight equal to leaf’s label. It continues with
2
16 − 132 empty inserts (𝐼𝑡 = ∅). At each time 𝑡 = 2

9, 210, 211, . . . , 217 (during the empty inserts) the algorithm
merges all components of weight 𝑡 to form a single new component, their parent. In this way, the algorithm
builds a component for each node, with weight equal to the node’s label. At time 𝑡 = 2

17 the final component
is built—the root, of weight 218, containing all items. The algorithm merges each item four times, so pays
build cost 4 × 218.

1

3

9

141 · · · 78

8

77 · · · 46

7

45 · · · 30

6

29 · · · 22

2

5

21 · · · 14

4

13 12 11 10

2
3

2
3

2
4

2
5

2
6
nodes

Fig. 6. The top three levels of𝑇∞. Each node 𝑖 has 2𝑖−𝑝 (𝑖) children, where 𝑝 (𝑖) is the parent of 𝑖 (exc. 𝑝 (1) = 0).
The merge tree 𝑇𝑁

2
(Figure 5) consists of these three levels, with each node 𝑖 given weight 2𝑁−𝑝 (𝑖) , so the

nodes with weight 2𝑁−𝑖 are the 2𝑖−𝑝 (𝑖) children of node 𝑖 , and their total weight equals the weight of node 𝑖 .
Note that the label of a node in the merge tree is its weight, and the merge tree of Figure 5 is 𝑇 18

2
.

1. make node 1 the root
2. for 𝑖 ← 1, 2, 3, . . . do:

2.1. let 𝑝 (𝑖) be the parent of 𝑖 , except 𝑝 (1) = 0

2.2. give node 𝑖 the 2𝑖−𝑝 (𝑖) children
{
𝑐 (𝑖 − 1) + 𝑗 : 1 ≤ 𝑗 ≤ 2

𝑖−𝑝 (𝑖)},
where 𝑐 (𝑖 − 1) is the max child of 𝑖 − 1, except 𝑐 (0) = 1

Fig. 7. An algorithm defining the tree 𝑇∞, with nodes {1, 2, 3, . . .}.

The desired merge tree. For reference, define an infinite rooted tree 𝑇∞ with node set {1, 2, 3, . . .}
by the iterative process shown in Figure 7. Each iteration 𝑖 defines the children of node 𝑖 . Node 𝑖 has

2
𝑖−𝑝 (𝑖)

children, where 𝑝 (𝑖) is the parent of 𝑖 (exc. 𝑝 (1) = 0); these children are allocated greedily

from the “next available” nodes, so that each node 𝑖 ≥ 2 is given exactly one parent. The depth of 𝑖

is non-decreasing with 𝑖 .7

Figure 6 shows the top three levels of 𝑇∞. Let 𝑛𝑑 be the number of nodes of depth 𝑑 or less in

𝑇∞. Each such node 𝑖 satisfies 𝑖 ≤ 𝑛𝑑 (as depth is non-decreasing with 𝑖), so, inspecting Line 2.2,

5
Defined by log

∗√
2

𝛼𝑡 = 0 if 𝛼𝑡 ≤ 8, else 1 + log∗√
2

(log√
2
𝛼𝑡) . Note that log∗√

2

𝛼𝑡 = Θ(log∗𝑒 𝛼𝑡) .
6
Curiously, the algorithm’s cost is in fact𝑂 (1) times the query cost of C∗ plus𝑂 (log∗𝑚) times its build cost.

7
This follows by induction: Line 2.2 ensures that 𝑝 (𝑖′) ≤ 𝑝 (𝑖) for 𝑖′ < 𝑖 , so inductively depth(𝑖′) = 1 + depth(𝑝 (𝑖′)) ≤
1 + depth(𝑝 (𝑖)) = depth(𝑖) .

Competitive Data-Structure Dynamization 1:13

node 𝑖 has at most 2
𝑖 ≤ 2

𝑛𝑑
children. Each node of depth 𝑑 + 1 or less is either the root or a

child of a node of depth 𝑑 or less, so 𝑛𝑑+1 ≤ 1 + 𝑛𝑑2𝑛𝑑 ≤ 2
2
𝑛𝑑
. Taking the log

∗
of both sides gives

log
∗ 𝑛𝑑+1 ≤ 2 + log∗ 𝑛𝑑 . Inductively, log∗ 𝑛𝑑 ≤ 2𝑑 for each 𝑑 .

Now fix an integer 𝐷 ≥ 0. Define the desired merge tree, 𝑇𝑁
𝐷
, to be the subtree of 𝑇∞ induced by

the nodes of depth at most 𝐷 + 1. Let𝑚 be the number of leaves in 𝑇𝑁
𝐷
. By the previous paragraph

(and𝑚 ≤ 𝑛𝐷+1), every leaf in 𝑇𝑁
𝐷

has depth Ω(log∗𝑚).
Assign weights to the nodes in 𝑇𝑁

𝐷
as follows. Fix 𝑁 = 2𝑛𝐷 . Give each node 𝑖 weight 2𝑁−𝑝 (𝑖) ,

where 𝑝 (𝑖) is the parent of 𝑖 (except 𝑝 (1) = 0). Each weight is a power of two, and the nodes of any

given weight 2
𝑁−𝑖

are exactly the 2
𝑖−𝑝 (𝑖)

children of node 𝑖 . The weight of each parent 𝑖 equals the

total weight of its children.

The input. Define the input 𝐼 as follows. For each time 𝑡 ∈ {1, 2, . . . ,𝑚}, insert a set 𝐼𝑡 containing
just one item whose weight equals the weight of the 𝑡th leaf of 𝑇𝑁

𝐷
. Then, at each time 𝑡 ∈

{𝑚 + 1,𝑚 + 2, . . . , 2𝑁−1}, insert an empty set 𝐼𝑡 = ∅.
In the following, we place a lower bound on the cost of the algorithm on input 𝐼 . For this, we

establish a matching between the algorithm’s cover and the leaves of 𝑇𝑁
𝐷
, which guides our bound

on the build cost of the algorithm.

No merges until last non-empty insertion. The algorithm does no merges before time min
𝑚
𝑖=1 wt(𝐼𝑖),

which is the minimum leaf weight in 𝑇𝑁
𝐷
. This is because if a merge occurs at a time 𝑡 then there

must be more than one component of weight at most 𝑡 at that time (by step 2.3 of the algorithm,

see Figure 3). The lightest leaves are the children of node 𝑛𝐷 , of weight 2
𝑁−𝑛𝐷

. Since the total

leaf weight is the weight of the root, 2
𝑁
, it follows that𝑚2

𝑁−𝑛𝐷 ≤ 2
𝑁
, that is,𝑚 ≤ 2

𝑛𝐷 = 2
𝑁−𝑛𝐷

(using 𝑁 = 2𝑛𝐷). So, the algorithm does no merges until time 𝑡 (𝑛𝐷) = 2
𝑁−𝑛𝐷 (after all non-empty

insertions).

The algorithm’s merge tree matches𝑇𝑁
𝐷
. By the previous two paragraphs, just before time 𝑡 (𝑛𝐷) =

2
𝑁−𝑛𝐷

the algorithm’s cover matches the leaves of 𝑇𝑁
𝐷
, meaning that the cover’s components

correspond to the leaves, with each component weighing the same as its corresponding node. The

leaves are { 𝑗 : 𝑝 (𝑗) ≤ 𝑛𝑑 < 𝑗}. So the following invariant holds initially, for 𝑖 = 𝑛𝐷 :

For each 𝑖 ∈ {𝑛𝐷 , 𝑛𝐷 − 1, . . . , 2, 1}, just before time 𝑡 (𝑖) = 2
𝑁−𝑖 , the algorithm’s cover C𝑡 (𝑖) matches

the nodes in 𝑄𝑖 , defined as

𝑄𝑖 � { 𝑗 : 2𝑁− 𝑗 < 𝑡 (𝑖) ≤ 2
𝑁−𝑝 (𝑗) } = { 𝑗 : 𝑝 (𝑗) ≤ 𝑖 < 𝑗}.

Informally, these are the nodes 𝑗 that have not yet been merged by time 𝑡 (𝑖), because their weight
2
𝑁−𝑝 (𝑗)

is at least 𝑡 (𝑖), but whose children (the nodes of weight 2
𝑁− 𝑗

) if any, have already been

merged.

We establish the invariant for all 𝑖 using a backward induction. Assume inductively that the

invariant holds for a given 𝑖 . We show it holds for 𝑖 − 1. At time 𝑡 (𝑖), the algorithm merges the

components of weight at most 𝜇 (𝑡 (𝑖)) = 𝑡 (𝑖) = 2
𝑁−𝑖

in its cover. By the invariant, these are the

components of weight 𝑡 (𝑖) = 2
𝑁−𝑖

, corresponding to the children of node 𝑖 (which are all in 𝑄𝑖).

They leave the cover and are replaced by their union, whose weight equals 2
𝑁−𝑝 (𝑖)

. Likewise, by

the definition (and 𝑝 (𝑗) < 𝑗)

𝑄𝑖−1 = {𝑖} ∪𝑄𝑖 \ { 𝑗 : 𝑝 (𝑗) = 𝑖},
so the resulting cover matches 𝑄𝑖−1, with the new component corresponding to node 𝑖 . The

minimum-weight nodes in 𝑄𝑖−1 are then { 𝑗 : 𝑝 (𝑗) = 𝑖 − 1}, the children of node 𝑖 − 1. These have
weight 2

𝑁−(𝑖−1) = 𝑡 (𝑖 − 1), so the algorithm keeps this cover until just before time 𝑡 (𝑖 − 1), so that

the invariant is maintained for 𝑖 − 1.

1:14 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

Inductively, we arrive at the validity of the invariant for 𝑖 = 1: just before time 𝑡 (1) = 2
𝑁−1 =

𝑛, the algorithm’s cover contains the components corresponding to { 𝑗 : 𝑝 (𝑗) = 1 < 𝑗}, with
weight 2

𝑁−𝑝 (𝑗) = 2
𝑁−1 = 𝑛. At time 𝑛 they are merged form the final component of weight 2

𝑁
,

corresponding to the root node 1. So the algorithm’s merge tree matches 𝑇𝑁
𝐷
.

Competitive ratio. Each leaf in the merge tree has depth Ω(log∗𝑚), so every item is merged

Ω(log∗𝑚) times, and the algorithm’s build cost is Ω(wt(1) log∗𝑚) = Ω(𝑛 log∗𝑚) (using wt(1) =
2𝑛).

But the optimal cost isΘ(𝑛). (Consider the solution that merges all input sets into one component

at time𝑚, just after all non-empty insertions. Its query cost is

∑𝑚−1
𝑡=1 𝑡 +∑𝑛

𝑡=𝑚 1 = 𝑂 (𝑚2 + 𝑛). Its
merge cost is 2wt(1) = 𝑂 (𝑛). Recalling that𝑚 ≤ 2

𝑛𝐷 = 2
𝑁 /2 = 𝑂 (

√
𝑛), the optimal cost is 𝑂 (𝑛).)

So the competitive ratio is Ω(log∗𝑚). □

Note that in Lemma 2.9, 𝑛 ≈𝑚2
, so log

∗𝑚 = Ω(log∗ 𝑛). The upper bound in Section 2.1 and the

lower bound in Lemma 2.9 prove Theorem 2.1.

3 𝐾-Component Dynamization and variants (Theorems 3.1–3.9)
3.1 Lower bound on optimal competitive ratio

Theorem 3.1. For 𝑘-Component Dynamization (and consequently for its generalizations) no deter-
ministic online algorithm has ratio competitive ratio less than 𝑘 .

To develop intuition before we give the detailed proof for the general case, here is a sketch

of how the proof goes for 𝑘 = 2. The adversary begins by inserting one item of weight 1 and

one item of infinitesimal weight 𝜀 > 0, followed by a sequence of 𝑛 − 2 weight-zero items just

until the algorithm’s cover has just one component. (This must happen, or the competitive ratio is

unbounded — OPT pays only at time 1, while the algorithm continues to pay at least 𝜀 each time

step.) By calculation the algorithm pays at least 2+ (𝑛− 1)𝜀, while OPT pays min(2+ 𝜀, 1+ (𝑛− 1)𝜀),
giving a ratio of 1.5 −𝑂 (𝜀).
This lower bound does not reach 2 (in contrast to the standard “rent-or-buy” lower bound)

because the algorithm and OPT both pay a “setup cost” of 1 at time 1. However, at the end of

sequence, the algorithm and OPT are left with a component of weight ∼ 1 in place. The adversary

can now continue, doing a second phase without the setup cost, by inserting an item of weight

√
𝜀,

then zeros just until the algorithm’s cover has just one component (again this must happen or the

ratio is unbounded). Let𝑚 be the length of this second phase. By calculation, for this phase, the
algorithm pays at least (𝑚 − 1)

√
𝜀 + 1 while OPT pays at most min(1 +

√
𝜀 + 𝜀, (𝑚 − 1) (

√
𝜀 + 𝜀)),

giving a ratio of 2 −𝑂 (
√
𝜀) for just the phase.

The ratio of the whole sequence (both phases together) is now 1.75−𝑂 (
√
𝜀). By doing additional

phases (using infinitesimal 𝜀1/𝑖 in the 𝑖th phase), the adversary can drive the ratio arbitrarily close

to 2. This is the idea for 𝑘 = 2. Next we give the detailed proof for the general case (arbitrary 𝑘 ≥ 2).

Proof of Theorem 3.1. Fix an arbitrarily small 𝜀 > 0. Define𝑘+1 sequences of items (weights) as

follows. Sequence 𝜎 (𝑘 + 1) has just one item, 𝜎1 (𝑘 + 1) = 𝜀. For 𝑗 ∈ {𝑘, 𝑘 − 1, . . . , 1}, in decreasing

order, define sequence 𝜎 (𝑗) to have 𝑛 𝑗 = ⌈𝑘/𝜎1 (𝑗 + 1)⌉ items, with the 𝑖th item being 𝜎𝑖 (𝑗) =
𝜀𝑛𝑘+𝑛𝑘−1+···+𝑛 𝑗−𝑖+2

. Each sequence 𝜎 (𝑗) is strictly increasing, and all items in 𝜎 (𝑗) are smaller than

all items in 𝜎 (𝑗 + 1). Every two items differ by a factor of at least 1/𝜀, so the cost to build any

component will be at most 1/(1 − 𝜀) times the largest item in the component.

Adversarial input sequence 𝐼 . Fix any deterministic online algorithm A. Define the input sequence
𝐼 to interleave the 𝑘 + 1 sequences in {𝜎 (𝑗) : 1 ≤ 𝑗 ≤ 𝑘 + 1} as follows. Start by inserting the only

item from sequence 𝜎 (𝑘 + 1): take 𝐼1 = {𝜎1 (𝑘 + 1)} = {𝜀}. For each time 𝑡 ≥ 1, after A responds

Competitive Data-Structure Dynamization 1:15

to the insertion at time 𝑡 , determine the next insertion 𝐼𝑡+1 = {𝑥} as follows. For each sequence

𝜎 (𝑗), call the most recent (and largest) item inserted so far from 𝜎 (𝑗), if any, the representative of
the sequence. Define index ℓ (𝑡) so that the largest representative in any new component at time

𝑡 is the representative of 𝜎 (ℓ (𝑡)). (The item inserted at time 𝑡 is necessarily a representative and

in at least one new component, so ℓ (𝑡) is well-defined.) At time 𝑡 + 1 choose the inserted item 𝑥

to be the next unused item from sequence 𝜎 (ℓ (𝑡) − 1). Define the parent of 𝑥 , denoted 𝑝 (𝑥), to be

the representative of 𝜎 (ℓ (𝑡)) at time 𝑡 . (Note: A’s build cost at time 𝑡 was at least 𝑝 (𝑥) ≫ 𝑥 .) Stop

when the cumulative cost paid by A reaches 𝑘 . This defines the input sequence 𝐼 .

The input 𝐼 is well-defined. Next we verify that 𝐼 is well-defined, that is, that (a) ℓ (𝑡) ≠ 1 for all 𝑡

(so 𝑥 ’s specified sequence 𝜎 (ℓ (𝑡) − 1) exists) and (b) each sequence 𝜎 (𝑗) is chosen at most 𝑛 𝑗 times.

First we verify (a). Choosing 𝑥 as described above forces the algorithm to maintain the following

invariants at each time 𝑡 :

(i) Each of the sequences in {𝜎 (𝑗) : ℓ (𝑡) ≤ 𝑗 ≤ 𝑘 + 1} has a representative, and
(ii) no two of these 𝑘 − ℓ (𝑡) + 2 representatives are in any one component.

Indeed, the invariants hold at time 𝑡 = 1 when ℓ (𝑡) = 𝑘 + 1. Assume they hold at some time 𝑡 .

At time 𝑡 + 1 the newly inserted element 𝑥 is the new representative of 𝜎 (ℓ (𝑡) − 1) and is in some

new component, so ℓ (𝑡 + 1) ≥ ℓ (𝑡) − 1. These facts imply that Invariant (i) is maintained. By the

definition of ℓ (𝑡 + 1), the components built at time 𝑡 + 1 contain the representative from 𝜎 (ℓ (𝑡 + 1))
but no representative from any 𝜎 (𝑗) with 𝑗 > ℓ (𝑡 + 1). This and ℓ (𝑡 + 1) ≥ ℓ (𝑡) − 1 imply that

Invariant (ii) is also maintained.

By inspection, Invariants (i) and (ii) imply that A has at least 𝑘 − ℓ (𝑡) + 2 components at time 𝑡 .

But A has at most 𝑘 components, so ℓ (𝑡) ≥ 2.

Next we verify (b), that 𝐼 takes at most 𝑛 𝑗 items from each sequence 𝜎 (𝑗). This holds for 𝜎 (𝑘 + 1)
just because, by definition, after time 1, 𝐼 cannot insert an item from 𝜎 (𝑘 + 1). Consider any
𝜎 (𝑗) with 𝑗 ≤ 𝑘 . For each item 𝜎𝑖 (𝑗) in 𝜎 (𝑗), when 𝐼 inserted 𝜎𝑖 (𝑗), algorithm A paid at least

𝑝 (𝜎𝑖 (𝑗)) ≥ 𝜎1 (𝑗 + 1) at the previous time step. So, before all 𝑛 𝑗 items from 𝜎 (𝑗) are inserted, A
must pay at least 𝑛 𝑗 𝜎1 (𝑗 + 1) ≥ 𝑘 (by the definition of 𝑛 𝑗), and the input stops. It follows that 𝐼 is

well-defined.

Upper-bound on optimum cost. Next we upper-bound the optimum cost for 𝐼 . For each 𝑗 ∈
{1, . . . , 𝑘}, define C(𝑗) to be the solution for 𝐼 that partitions the items inserted so far into the

following 𝑘 components: one component containing items from 𝜎 (𝑗) and 𝜎 (𝑗 + 1), and, for each
ℎ ∈ {1, . . . , 𝑘 + 1} \ { 𝑗, 𝑗 + 1}, one containing items from 𝜎 (ℎ).

To bound cost(C(𝑗)), i.e., the total cost of new components in C(𝑗), first consider the new

components such that the largest item in the new component is the just-inserted item, say, 𝑥 . The

cost of such a component is at most 𝑥/(1 − 𝜀). Each item 𝑥 is inserted at most once, so the total

cost of all such components is at most 1/(1 − 𝜀) times the sum of all defined items, and therefore at

most

∑∞
𝑖=1 𝜀

𝑖/(1 − 𝜀) = 𝜀/(1 − 𝜀)2. For every other new component, the just-inserted item 𝑥 must

be from sequence 𝜎 (𝑗 + 1), so the largest item in the component is the parent 𝑝 (𝑥) (in 𝜎 (𝑗)) and
the build cost is at most 𝑝 (𝑥)/(1 − 𝜀). Defining𝑚 𝑗 ≤ 𝑛 𝑗 to be the number of items inserted from

𝜎 (𝑗), the total cost of building all such components is at most

∑𝑚 𝑗

𝑖=1
𝑝 (𝜎𝑖 (𝑗))/(1 − 𝜀). So cost(C(𝑗))

is at most 𝜀/(1 − 𝜀)2 +∑𝑚 𝑗

𝑖=1
𝑝 (𝜎𝑖 (𝑗))/(1 − 𝜀).

The cost of OPT is at most min𝑗 cost(C(𝑗)). The minimum is at most the average, so

(1 − 𝜀)2 cost(OPT) ≤ min

𝑗=1,...,𝑘
𝜀 +

𝑚 𝑗∑︁
𝑖=1

𝑝 (𝜎𝑖 (𝑗)) ≤ 𝜀 + 1

𝑘

𝑘∑︁
𝑗=1

𝑚 𝑗∑︁
𝑖=1

𝑝 (𝜎𝑖 (𝑗)) .

1:16 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

algorithm Greedy-Dual(𝐼1, 𝐼2, . . . , 𝐼𝑛) — for 𝑘-Component Dynamization with decreasing weights

1. maintain a cover (collection of components), initially empty
2. for each time 𝑡 = 1, 2, . . . , 𝑛 such that 𝐼𝑡 ≠ ∅:
2.1. if there are 𝑘 current components:

2.1.1. increase all components’ credits continuously until some component 𝑆 has credit[𝑆] ≥ wt𝑡 (𝑆)
2.1.2. let 𝑆0 be the oldest component such that credit[𝑆0] ≥ wt𝑡 (𝑆0)
2.1.3. merge 𝐼𝑡 , 𝑆0 and all components newer than 𝑆0 into one new component 𝑆 ′

2.1.4. initialize credit[𝑆 ′] to 0
2.2. else:

2.2.1. create a new component from 𝐼𝑡 , with zero credit

Fig. 8. A newest-first 𝑘-competitive algorithm for 𝑘-Component Dynamization with decreasing weights
(Theorem 3.2).

Lower bound on algorithm cost. The right-hand side of the above inequality is at most (𝜀/𝑘 +
1/𝑘) cost(A), because cost(A) ≥ 𝑘 (by the stopping condition) and

∑𝑘
𝑗=1

∑𝑚 𝑗

𝑖=1
𝑝 (𝜎𝑖 (𝑗)) ≤ cost(A).

(Indeed, for each 𝑗 ∈ {1, . . . , 𝑘} and 𝑖 ∈ {1, . . . ,𝑚 𝑗 }, the item 𝜎𝑖 (𝑗) was inserted at some time

𝑡 ≥ 2, and A paid at least 𝑝 (𝜎𝑖 (𝑗)) at the previous time 𝑡 − 1.) So the competitive ratio is at least

(1 − 𝜀)2/(𝜀/𝑘 + 1/𝑘) ≥ (1 − 3𝜀)𝑘 . This holds for all 𝜀 > 0, so the ratio is at least 𝑘 . □

3.2 Upper bound for 𝑘-Component Dynamization with decreasing weights
Recall that, in 𝑘-Component Dynamization with decreasing weights, each item 𝑥 ∈ 𝐼𝑡 has weights
wt𝑡 (𝑥) ≥ wt𝑡+1 (𝑥) ≥ · · · ≥ wt𝑛 (𝑥). The cost of building a component 𝑆 ⊆ 𝑈𝑡 at time 𝑡 is redefined

as wt𝑡 (𝑆) =
∑

𝑥∈𝑆 wt𝑡 (𝑥). This variant is technically useful, as a stepping stone to the LSM variant.

Theorem 3.2. For 𝑘-Component Dynamization with decreasing weights (and plain 𝑘-Component
Dynamization) the deterministic online algorithm in Figure 8 is 𝑘-competitive.

Proof. Consider any execution of the algorithm on any input 𝐼1, 𝐼2, . . . , 𝐼𝑛 . Let 𝛿𝑡 be such that

each component’s credit increases by 𝛿𝑡 at time 𝑡 . (If Block 2.2 is executed, 𝛿𝑡 = 0.) To prove the

theorem we show the following lemmas.

Lemma 3.3. The cost incurred by the algorithm is at most 𝑘
∑𝑛

𝑡=1

(
wt𝑡 (𝐼𝑡) + 𝛿𝑡

)
.

Lemma 3.4. The cost incurred by the optimal solution is at least
∑𝑛

𝑡=1

(
wt𝑡 (𝐼𝑡) + 𝛿𝑡

)
.

Proof of Lemma 3.3. As the algorithm executes, keep the components ordered by age, oldest

first. Assign each component a rank equal to its rank in this ordering. Say that the rank of any item
is the rank of its current component, or 𝑘 + 1 if the item is not yet in any component. At each time

𝑡 , when a new component is created in Line 2.1.3, the ranks of the items in 𝑆0 stay the same, but

the ranks of all other items decrease by at least 1. Divide the cost of the new component into two

parts: the contribution from the items that decrease in rank, and the remaining cost.

Throughout the execution of the algorithm, each item’s rank can decrease at most 𝑘 times, so

the total contribution from items as their ranks decrease is at most 𝑘
∑𝑛

𝑡=1 wt𝑡 (𝐼𝑡) (using here that

the weights are non-increasing with time). To complete the proof of the lemma, observe that the

remaining cost is the sum, over times 𝑡 when Line 2.1.3 is executed, of the weight wt𝑡 (𝑆0) of the
component 𝑆0 at time 𝑡 . This sum is at most the total credit created, because, when a component 𝑆0

Competitive Data-Structure Dynamization 1:17

is destroyed in Line 2.1.3, at least the same amount of credit (on 𝑆0) is also destroyed. But the total

credit created is 𝑘
∑𝑛

𝑡=1 𝛿𝑡 , because when Line 2.1.1 executes it increases the total component credit

by 𝑘𝛿𝑡 . □

Proof of Lemma 3.4. Let C∗ be an optimal solution. Let C denote the algorithm’s solution.

At each time 𝑡 , when the algorithm executes Line 2.1.1, it increases the credit of each of its 𝑘

components in C𝑡−1 by 𝛿𝑡 . So the total credit the algorithm gives is 𝑘
∑

𝑡 𝛿𝑡 .
For each component 𝑆 ∈ C𝑡−1, think of the credit given to 𝑆 as being distributed over the

component’s items 𝑥 ∈ 𝑆 in proportion to their weights, wt𝑡 (𝑥): at time 𝑡 , each item 𝑥 ∈ 𝑆 receives

credit 𝛿𝑡 wt𝑡 (𝑥)/wt𝑡 (𝑆). Have each 𝑥 , in turn, charge this amount to one component in OPT’s
current cover C∗𝑡 that contains 𝑥 . In this way, the entire credit 𝑘

∑𝑛
𝑡=1 𝛿𝑡 is charged to components in

C∗.
Recall that [𝑡, 𝑡 ′] denotes {𝑡, 𝑡 + 1, . . . , 𝑡 ′}.

Sublemma 2. Let 𝑥 be any item. Let [𝑡, 𝑡 ′] be any time interval throughout which 𝑥 remains in the
same component in C. The cumulative credit given to 𝑥 during [𝑡, 𝑡 ′] is at most wt𝑡 (𝑥).

Proof. Let 𝑆 be the component in C that contains 𝑥 throughout [𝑡, 𝑡 ′]. Assume that 𝛿𝑡 ′ > 0

(otherwise reduce 𝑡 ′ by one). Let credit𝑡 ′ [𝑆] denote credit[𝑆] at the end of iteration 𝑡 ′. Weights are

non-increasing with time, so the credit that 𝑥 receives during [𝑡, 𝑡 ′] is
𝑡 ′∑︁
𝑖=𝑡

wt𝑖 (𝑥)
wt𝑖 (𝑆)

𝛿𝑖 ≤
wt𝑡 (𝑥)
wt𝑡 ′ (𝑆)

𝑡 ′∑︁
𝑖=𝑡

𝛿𝑖 ≤
wt𝑡 (𝑥)
wt𝑡 ′ (𝑆)

credit𝑡 ′ [𝑆] .

The right-hand side is at most wt𝑡 (𝑥). (Indeed, in iteration 𝑡 ′ Line 2.1.1 increased all components’

credits by 𝛿𝑡 ′ > 0, while maintaining the invariant that credit[𝑆] ≤ wt𝑡 ′ (𝑆), so credit𝑡 ′ [𝑆] ≤
wt𝑡 ′ (𝑆).) □

Next we bound how much charge OPT’s components (in C∗) receive. For any time 𝑡 , let N∗𝑡 =

C∗𝑡 \C∗𝑡−1 contain the components thatOPT creates at time 𝑡 , and let𝑁 ∗𝑡 =
⋃

𝑆∈N∗𝑡 𝑆 contain the items

in these components. Call the charges received by components in N∗𝑡 from components created by

the algorithm before time 𝑡 forward charges. Call the remaining charges (from components created

by the algorithm at time 𝑡 or after) backward charges.
Consider first the backward charges to components inN∗𝑡 . These charges come from components

in C𝑡−1, via items 𝑥 in 𝑁 ∗𝑡 ∩𝑈𝑡−1, from time 𝑡 until the algorithm destroys the component in C𝑡−1
that contains 𝑥 . By Sublemma 2, the total charge via a given 𝑥 from time 𝑡 until its component is

destroyed is at most wt𝑡 (𝑥), so the cumulative charge to components inN∗𝑡 from older components

is at most wt𝑡 (𝑁 ∗𝑡 ∩ 𝑈𝑡−1) = wt𝑡 (𝑁 ∗𝑡) − wt𝑡 (𝐼𝑡) (using that 𝑁 ∗𝑡 \ 𝑈𝑡−1 = 𝐼𝑡). Using that OPT
pays at least wt𝑡 (𝑁 ∗𝑡) at time 𝑡 , and summing over 𝑡 , the sum of all backward charges is at most
cost(OPT) −∑𝑡 wt𝑡 (𝐼𝑡).

Next consider the forward charges, from components created at time 𝑡 or later, to any component

𝑆∗ in N∗𝑡 . Component 𝑆∗ receives no forward charges at time 𝑡 , because components created by

the algorithm at time 𝑡 receive no credit at time 𝑡 . Consider the forward charges 𝑆∗ receives at any
time 𝑡 ′ ≥ 𝑡 + 1. At most one component (in C𝑡 ′−1) can contain items in 𝑁 ∗𝑡 , namely, the component

in C𝑡 ′−1 that contains 𝐼𝑡 . (Indeed, the algorithm merges components “newest first”, so any other

component in C𝑡 ′−1 created after time 𝑡 only contains items inserted after time 𝑡 , none of which

are in 𝑁 ∗𝑡 .) At time 𝑡 ′, the credit given to that component is 𝛿𝑡 ′ , so the components created by the

algorithm at time 𝑡 ′ charge a total of at most 𝛿𝑡 ′ to 𝑆
∗
. Let𝑚(𝑡, 𝑡 ′) = |N∗𝑡 ∩ C∗𝑡 ′ | be the number of

components 𝑆∗ that OPT created at time 𝑡 that remain at time 𝑡 ′. Summing over 𝑡 ′ ≥ 𝑡 + 1 and
𝑆∗ ∈ N∗𝑡 , the forward charges to components in N∗𝑡 total at most

∑𝑛
𝑡 ′=𝑡+1𝑚(𝑡, 𝑡 ′)𝛿𝑡 ′ . Summing over

1:18 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

𝑡 , the sum of all forward charges is at most
𝑛∑︁
𝑡=1

𝑛∑︁
𝑡 ′=𝑡+1

𝑚(𝑡, 𝑡 ′)𝛿𝑡 ′ =

𝑛∑︁
𝑡 ′=2

𝛿𝑡 ′

𝑡 ′−1∑︁
𝑡=1

𝑚(𝑡, 𝑡 ′) ≤
𝑛∑︁

𝑡 ′=1

𝛿𝑡 ′ (𝑘 − 1)

(using that

∑𝑡 ′−1
𝑡=1 𝑚(𝑡, 𝑡 ′) ≤ 𝑘 − 1 for all 𝑡 , because OPT has at most 𝑘 components at time 𝑡 ′, at

least one of which is created at time 𝑡 ′).
Recall that the entire credit 𝑘

∑𝑛
𝑡=1 𝛿𝑡 is charged to components in C∗. Summing the bounds from

the two previous paragraphs on the (forward and backward) charges, this implies that

𝑘
∑𝑛

𝑡=1 𝛿𝑡 ≤ cost(OPT) −∑𝑛
𝑡=1 wt𝑡 (𝐼𝑡) + (𝑘 − 1)

∑𝑛
𝑡=1 𝛿𝑡 .

This proves the lemma, as it is equivalent to the desired bound cost(OPT) ≥ ∑𝑛
𝑡=1 wt𝑡 (𝐼𝑡) + 𝛿𝑡 . □

This proves Theorem 3.2. □

3.3 Bootstrapping newest-first algorithms
Theorem 3.5. Any newest-first online algorithm A for 𝑘-Component (or Min-Sum) dynamization

with decreasing weights can be converted into an equally competitive online algorithm A′ for the LSM
variant.

Proof. Fix an instance (𝐼 ,wt) of LSM 𝑘-Component (or Min-Sum) Dynamization. For any

solution C to this instance, let wt(C) denote its build cost using build-cost function wt. For any set

𝑆 of items and any item 𝑥 ∈ 𝑆 , let nr(𝑥, 𝑆) be 0 if 𝑥 is redundant in 𝑆 (that is, there exists a newer

item in 𝑆 with the same key) and 1 otherwise. Then wt𝑡 (𝑆) =
∑

𝑥∈𝑆 nr(𝑥, 𝑆) wt𝑡 (𝑥), where wt𝑡 (𝑥)
is wt(𝑥) unless 𝑥 is expired, in which case wt𝑡 (𝑥) is the tombstone weight of 𝑥 . The tombstone

weight of 𝑥 must be at most wt(𝑥), so wt𝑡 (𝑥) is non-increasing with 𝑡 .

For any time 𝑡 and item 𝑥 ∈ 𝑈𝑡 , define wt′𝑡 (𝑥) = nr(𝑥,𝑈𝑡) wt𝑡 (𝑥). For any item 𝑥 , wt′𝑡 (𝑥) is
non-increasing with 𝑡 , so (𝐼 ,wt′) is an instance of 𝑘-Component Dynamization with decreasing

weights. For any solution C for this instance, let wt′ (C) denote its build cost using build-cost

function wt′.

Lemma 3.6. For any time 𝑡 and set 𝑆 ⊆ 𝑈𝑡 , we have wt′𝑡 (𝑆) ≤ wt𝑡 (𝑆).

Proof. Redundant items in 𝑆 are redundant in𝑈𝑡 , so

wt′𝑡 (𝑆) =
∑︁
𝑥∈𝑆

wt′𝑡 (𝑥) =
∑︁
𝑥∈𝑆

nr(𝑥,𝑈𝑡) wt𝑡 (𝑥) ≤
∑︁
𝑥∈𝑆

nr(𝑥, 𝑆) wt𝑡 (𝑥) = wt𝑡 (𝑆). (3)

□

Lemma 3.7. Let C be any newest-first solution for (𝐼 ,wt′) and (𝐼 ,wt). Then wt′ (C) = wt(C).

Proof. Consider any time 𝑡 with 𝐼𝑡 ≠ ∅. Let 𝑆 be C’s new component at time 𝑡 (so C𝑡 \C𝑡−1 = {𝑆}).
Consider any item 𝑥 ∈ 𝑆 . Because C is newest-first, 𝑆 includes all items inserted with or after 𝑥 .

So 𝑥 is redundant in 𝑈𝑡 iff 𝑥 is redundant in 𝑆 , that is, nr(𝑥,𝑈𝑡) = nr(𝑥, 𝑆), so wt′𝑡 (𝑆) = wt𝑡 (𝑆)
(because Bound (3) above holds with equality). Summing over all 𝑡 gives wt′ (C) = wt(C). □

Given an instance (𝐼 ,wt) of LSM𝑘-Component Dynamization, the algorithmA′ simulatesA on the

instance (𝐼 ,wt′) defined above. Using Lemma 3.7, that A is 𝑐-competitive, and wt′ (OPT(𝐼 ,wt′)) ≤
wt(OPT(𝐼 ,wt)) (by Lemma 3.6), we get

wt(A′ (𝐼 ,wt)) = wt′ (A(𝐼 ,wt′)) ≤ 𝑐 wt′ (OPT(𝐼 ,wt′)) ≤ 𝑐 wt(OPT(𝐼 ,wt)) .
So A′ is 𝑐-competitive. □

Competitive Data-Structure Dynamization 1:19

algorithm B1 (𝐼1, 𝐼2, . . . , 𝐼𝑛) — for 𝑘 = 1

1. for 𝑡 = 1, 2, . . . , 𝑛: use cover C𝑡 = {𝑈𝑡 } where𝑈𝑡 =
⋃𝑡

𝑖=1 𝐼𝑖 — one component holding all items

algorithm B𝑘 (𝐼1, 𝐼2, . . . , 𝐼𝑛) — for 𝑘 ≥ 2

1. initialize 𝑡 ′ = 1 — variable 𝑡 ′ holds the start time of the current phase

2. for 𝑡 = 1, 2, . . . , 𝑛:

2.1. let C′ = B𝑘−1 (𝐼𝑡 ′ , 𝐼𝑡 ′+1, . . . , 𝐼𝑡) — the solution generated by B𝑘−1 for the current phase so far

2.2. if the total cost of C′ exceeds (𝑘 − 1) wt𝑡 (𝑈𝑡): take C𝑡 = {𝑈𝑡 } and let 𝑡 ′ = 𝑡 + 1 — end the phase

2.3. else: use cover C𝑡 = {𝑈𝑡 ′ } ∪ C′𝑡 , where C′𝑡 is the last cover in C′ — C′𝑡 has at most 𝑘 − 1 components

Fig. 9. Recursive algorithm for general 𝑘-Component Dynamization (Theorem 3.9).

Combined with the observation that the Greedy-Dual algorithm (Figure 8) is newest-first, Theo-

rems 3.2 and 3.5 yield a 𝑘-competitive algorithm for LSM 𝑘-Component Dynamization:

Corollary 3.8. There is a deterministic online algorithm for LSM 𝑘-Component Dynamization
with competitive ratio 𝑘 .

3.4 Upper bound for general variant
Theorem 3.9. For general 𝑘-Component Dynamization, the deterministic online algorithm B𝑘 in

Figure 9 is 𝑘-competitive.

Proof. The proof is by induction on 𝑘 . For 𝑘 = 1, Algorithm B1 is 1-competitive (optimal)

because there is only one solution for any instance. Consider any 𝑘 ≥ 2, and assume inductively

that B𝑘−1 is (𝑘 − 1)-competitive. Fix any input (𝐼 ,𝑤) with 𝐼 = (𝐼1, . . . , 𝐼𝑛). Let OPT𝑘 denote the

optimal (offline) algorithm, and let C∗ = OPT𝑘 (𝐼1, . . . , 𝐼𝑛) be an optimal solution for 𝐼 .

LetN∗𝑡 = C∗𝑡 \ C∗𝑡−1 denote OPT’s new components at time 𝑡 . For 𝑎, 𝑏 ∈ [𝑛], let Δ𝑏
𝑎 (OPT𝑘) denote

the cost incurred by OPT𝑘 during time interval [𝑎, 𝑏], that is, ∑𝑏
𝑖=𝑎

∑
𝑆∈N∗

𝑖
𝑤𝑖 (𝑆). (Recall [𝑎, 𝑏]

denotes {𝑎, 𝑎 + 1, . . . , 𝑏}.) Likewise, let Δ𝑏
𝑎 (B𝑘) denote the cost incurred by B𝑘 during [𝑎, 𝑏]. Let

I𝑏𝑎 = (𝐼𝑎, 𝐼𝑎+1, . . . , 𝐼𝑏) denote the subproblem formed by the insertions during [𝑎, 𝑏], with build-costs
inherited from𝑤 .

Recall that B𝑘 partitions the input sequence into phases, each of which (except possibly the last)

ends with B𝑘 doing a full merge (i.e., at a time 𝑡 with |C𝑡 | = 1). Assume without loss of generality

that B𝑘 ends the last phase with a full merge. (Otherwise, append a final empty insertion at time

𝑛 + 1 and define𝑤𝑛+1 (𝑈𝑛+1) = 0. This does not increase the optimal cost, and causes the algorithm

to do a full merge at time 𝑛 + 1 unless its total cost in the phase is zero.) Consider any phase. Now

fix 𝑎 and 𝑏 to be the first and last time steps during the phase. To prove the theorem, we show

Δ𝑏
𝑎 (B𝑘) ≤ 𝑘 Δ𝑏

𝑎 (OPT𝑘). The theorem follows by summing over the phases.

The proof is via a series of lemmas. Recall that𝑈𝑡 denotes
⋃𝑡

𝑖=1 𝐼𝑖 .

Lemma 3.10. For any integer 𝑗 ∈ [𝑎, 𝑏], cost(B𝑘−1 (I 𝑗
𝑎)) ≤ (𝑘 − 1) cost(OPT𝑘−1 (I 𝑗

𝑎)).

Proof. The instance (𝐼 ,𝑤) obeys Restrictions (R1)–(R3). So, by inspection of those restrictions,

I 𝑗
𝑎 also obeys them. That is, I 𝑗

𝑎 is a valid instance of general (𝑘 − 1)-component Dynamization. So,

by the inductive assumption, B𝑘−1 is (𝑘 − 1)-competitive for I 𝑗
𝑎 . □

1:20 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

For 𝑗 ∈ [𝑎, 𝑏], say that OPT rebuilds by time 𝑗 if 𝑈𝑎−1 ⊆
⋃𝑗

𝑖=𝑎

⋃
𝑆∈N𝑖

𝑆 . That is, every element

inserted before time 𝑎 is in some new component during [𝑎, 𝑗]. (Equivalently, ⋃𝑗

𝑖=𝑎

⋃
𝑆∈N𝑖

𝑆 = 𝑈 𝑗 .)

Lemma 3.11. Suppose OPT rebuilds by time 𝑗 . Then Δ 𝑗
𝑎 (OPT𝑘) ≥ 𝑤 𝑗 (𝑈 𝑗).

Proof.

𝑤 𝑗 (𝑈 𝑗) = 𝑤 𝑗

(⋃𝑗

𝑖=𝑎

⋃
𝑆∈N𝑖

𝑆
)

(OPT rebuilds by time 𝑗)
≤ ∑𝑗

𝑖=𝑎

∑
𝑆∈N𝑖

𝑤 𝑗 (𝑆) (by sub-additivity (R1))
≤ ∑𝑗

𝑖=𝑎

∑
𝑆∈N𝑖

𝑤𝑖 (𝑆) (by temporal monotonicity (R3))
= Δ 𝑗

𝑎 (OPT𝑘). (by definition)
□

Lemma 3.12. Suppose OPT does not rebuild by time 𝑗 ∈ [𝑎, 𝑏]. Then cost(OPT𝑘−1 (I 𝑗
𝑎)) ≤

Δ 𝑗
𝑎 (OPT𝑘).

Proof. Because OPT does not rebuild by time 𝑗 , some element 𝑥 in 𝑈𝑎−1 is not in any new

component during [𝑎, 𝑗]. Let 𝑆 be the component in C∗𝑗 containing 𝑥 . Since 𝑆∗ is not new during

[𝑎, 𝑗], it must be that 𝑆∗ is in C∗𝑖 for every 𝑖 ∈ [𝑎 − 1, 𝑗], and 𝑆∗ ⊆ 𝑈𝑎−1.

For the subproblem I 𝑗
𝑎 , let C′ be the solution defined by C′𝑖 = {𝑆 \ 𝑈𝑎−1 : 𝑆 ∈ C∗𝑖 } \ {∅} for

𝑖 ∈ [𝑎, 𝑗]. Because each C∗𝑖 has at most 𝑘 components, one of which is 𝑆∗, and 𝑆∗ ⊆ 𝑈𝑎−1, it follows

that each C𝑖 has at most 𝑘 − 1 components. So cost(OPT𝑘−1 (I 𝑗
𝑎)) ≤ cost(C′).

If a given component 𝑆 \𝑈𝑎−1 is new in C′ at time 𝑖 ∈ [𝑎, 𝑗], then the corresponding component

𝑆 is new in C∗ at time 𝑖 . Further, by suffix monotonicity (R2), the cost𝑤𝑖

(
𝑆 \𝑈𝑎−1

)
paid by C′ for

𝑆 \𝑈𝑎−1 is at most the cost𝑤𝑖 (𝑆) paid by C∗ for 𝑆 . (Inspecting the definition of (R2), we require
that 𝑆 ≠ 𝑈𝑖 , which holds because OPT has not rebuilt by time 𝑗 .) So cost(C′) ≤ Δ 𝑗

𝑎 (OPT𝑘). □

Lemma 3.13. cost(B𝑘−1 (I𝑏−1𝑎)) ≤ (𝑘 − 1)Δ𝑏−1
𝑎 (OPT𝑘)

Proof. If 𝑎 = 𝑏 then cost(B𝑘−1 (I𝑏−1𝑎)) = 0, so assume 𝑎 < 𝑏. If OPT rebuilds by time 𝑏 − 1, then
cost(B𝑘−1 (I𝑏−1𝑎)) ≤ (𝑘 − 1)𝑤𝑏−1 (𝑈𝑏−1) (𝐵𝑘 does not end the phase at time 𝑏 − 1)

≤ (𝑘 − 1)Δ𝑏−1
𝑎 (OPT𝑘) (Lemma 3.11 with 𝑗 = 𝑏 − 1).

Otherwise OPT does not rebuild by time 𝑏 − 1, so

cost(B𝑘−1 (I𝑏−1𝑎)) ≤ (𝑘 − 1) cost(OPT𝑘−1 (I𝑏−1𝑎)) (Lemma 3.10 with 𝑗 = 𝑏 − 1)
≤ (𝑘 − 1)Δ𝑏−1

𝑎 (OPT𝑘) (Lemma 3.12 with 𝑗 = 𝑏 − 1).
□

Lemma 3.14. 𝑤𝑏 (𝑈𝑏) ≤ Δ𝑏
𝑎 (OPT𝑘)

Proof. If OPT rebuilds by time 𝑏, then

𝑤𝑏 (𝑈𝑏) ≤ Δ𝑏
𝑎 (OPT𝑘) (Lemma 3.11 with 𝑗 = 𝑏).

Otherwise OPT does not rebuild by time 𝑏, so

𝑤𝑏 (𝑈𝑏) < cost(B𝑘−1 (I𝑏𝑎))/(𝑘 − 1) (because 𝐵𝑘 ends the phase at time 𝑏)
≤ cost(OPT𝑘−1 (I𝑏𝑎)) (Lemma 3.10 with 𝑗 = 𝑏)
≤ Δ𝑏

𝑎 (OPT𝑘) (Lemma 3.12 with 𝑗 = 𝑏).

Competitive Data-Structure Dynamization 1:21

intervals before modification

· · · 𝑉 = 𝑉1 𝑉2 · · · 𝑉ℓ · · ·
· · · 𝑉 ′ · · ·

−→

intervals after modification

· · · 𝑉2 · · · 𝑉ℓ · · ·
· · · 𝑉 ′

1
𝑉 ′
2

· · ·

Fig. 10. Replacing intervals 𝑉 and 𝑉 ′ by 𝑉 ′
1
and 𝑉 ′

2
(proof of Theorem 4.1).

□

The lemmas imply that the algorithm is 𝑘-competitive for the phase:

Δ𝑏
𝑎 (B𝑘) = cost(B𝑘−1 (I𝑏−1𝑎)) +𝑤𝑏 (𝑈𝑏) (by definition of B𝑘)

≤ cost(B𝑘−1 (I𝑏−1𝑎)) + Δ𝑏
𝑎 (OPT𝑘) (Lemma 3.14)

≤ (𝑘 − 1)Δ𝑏−1
𝑎 (OPT𝑘) + Δ𝑏

𝑎 (OPT𝑘) (Lemma 3.13)
≤ 𝑘 (Δ𝑏

𝑎 OPT𝑘) (as Δ𝑏−1
𝑎 (OPT𝑘) ≤ Δ𝑏

𝑎 (OPT𝑘))
Theorem 3.9 follows by summing over the phases. □

4 Properties of optimal offline solutions
Theorem 4.1. Every instance of 𝑘-Component or Min-Sum Dynamization has an optimal solution

that is newest-first and lightest-first.

Proof. Fix an instance 𝐼 = (𝐼1, . . . , 𝐼𝑛). Recall that [𝑡, 𝑡 ′] denotes {𝑡, 𝑡 + 1, . . . , 𝑡 ′}. For any com-

ponent 𝑆 that is new at some time 𝑡 of a given solution C, we say that 𝑆 uses (time) interval [𝑡, 𝑡 ′],
where 𝑡 ′ = max{ 𝑗 ∈ [𝑡, 𝑛] : (∀𝑖 ∈ [𝑡, 𝑗]) 𝑆 ∈ C𝑖 } is the time that (this occurrence of) 𝑆 is destroyed.

We refer to [𝑡, 𝑡 ′] as the interval of (this occurrence of) 𝑆 . For the proof we think of any solution C
as being constructed in two steps: (i) choose the set 𝑇 of time intervals that the components of C
will use, then (ii) given 𝑇 , for each interval [𝑡, 𝑡 ′] ∈ 𝑇 , choose a set 𝑆 of items for [𝑡, 𝑡 ′], then form

a component 𝑆 in C with interval [𝑡, 𝑡 ′] (that is, add 𝑆 to C𝑖 for 𝑖 ∈ [𝑡, 𝑡 ′]). We shall see that the

second step (ii) decomposes by item: an optimal solution can be found by greedily choosing the

intervals for each item 𝑥 ∈ 𝑈𝑛 independently. The resulting solution has the desired properties.

Here are the details.

Fix an optimal solution C∗ for the given instance, breaking ties by choosing C∗ to minimize the

total query cost

∑
[𝑡,𝑡 ′]∈𝑇 ∗ 𝑡

′ − 𝑡 + 1 where 𝑇 ∗ is the set of intervals of components in C∗. Assume

without loss of generality that, for each 𝑡 ∈ [1, 𝑛], if 𝐼𝑡 = ∅, then C∗𝑡 = C∗𝑡−1 (interpreting C∗0 as

∅). (If not, replace C∗𝑡 by C∗𝑡−1.) For each item 𝑥 ∈ 𝑈𝑛 , let 𝛼
∗ (𝑥) denote the set of intervals in 𝑇 ∗ of

components that contain 𝑥 . The build cost of C∗ equals ∑𝑥∈𝑈𝑛
wt(𝑥) |𝛼∗ (𝑥) |. For each time 𝑡 and

item 𝑥 ∈ 𝐼𝑡 , the intervals 𝛼∗ (𝑥) of 𝑥 cover [𝑡, 𝑛], meaning that the union of the intervals in 𝛼∗ (𝑥) is
[𝑡, 𝑛].
Next construct the desired solution C′ from 𝑇 ∗. For each time 𝑡 and item 𝑥 ∈ 𝐼𝑡 , let 𝛼 (𝑥) =
{𝑉1, . . . ,𝑉ℓ } be a sequence of intervals chosen greedily from 𝑇 ∗ as follows. Interval 𝑉1 is the latest-
ending interval starting at time 𝑡 . For 𝑖 ≥ 2, interval 𝑉𝑖 is the latest-ending interval starting at time

𝑡 ′𝑖−1 + 1 or earlier, where 𝑡 ′𝑖−1 is the end-time of 𝑉𝑖−1. The final interval has end-time 𝑡 ′ℓ = 𝑛. By a

standard argument, this greedy algorithm chooses from 𝑇 ∗ a minimum-size interval cover of [𝑡, 𝑛],
so |𝛼 (𝑥) | ≤ |𝛼∗ (𝑥) |.

Obtain C′ as follows: for each interval [𝑖, 𝑗] ∈ 𝑇 ∗, add a component in C′ with time interval [𝑖, 𝑗]
containing the items 𝑥 such that [𝑖, 𝑗] ∈ 𝛼 (𝑥). This is a valid solution because, for each time 𝑡 and

1:22 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

𝑥 ∈ 𝐼𝑡 , 𝛼 (𝑥) covers [𝑡, 𝑛]. Its build cost is at most the build cost of C∗, because∑𝑥∈𝑈𝑛
wt(𝑥) |𝛼 (𝑥) | ≤∑

𝑥∈𝑈𝑛
wt(𝑥) |𝛼∗ (𝑥) |. At each time 𝑡 , its query cost is at most the query cost of C∗, because it uses

the same set 𝑇 ∗ of intervals. So C′ is an optimal solution.

C′ is newest-first. The following properties hold:

(1) 𝛼 uses (assigns at least one item to) each interval 𝑉 ∈ 𝑇 ∗. Otherwise removing 𝑉 from 𝑇 ∗

(and using the same 𝛼) would give a solution with the same build cost but lower query cost,

contradicting the definition of C∗.
(2) For all 𝑡 ∈ [1, 𝑛], the number of intervals in 𝑇 ∗ starting at time 𝑡 is 1 if 𝐼𝑡 ≠ ∅ and 0 otherwise.

Among intervals in 𝑇 ∗ that start at 𝑡 , only one — the latest ending — can be used in any

𝛼 (𝑥). So by Property 1 above, 𝑇 ∗ has at most interval starting at 𝑡 . If 𝐼𝑡 ≠ ∅, C∗ must have a

new component at time 𝑡 , so there is such an interval. If 𝐼𝑡 = ∅ there is not (by the initial

choice of C∗ it has no new component at time 𝑡).

(3) For every two consecutive intervals 𝑉𝑖 ,𝑉𝑖+1 in any 𝛼 (𝑥), 𝑉𝑖+1 is the interval in 𝑇 ∗ that starts
just after 𝑉𝑖 ends. Fix any such 𝑉𝑖 ,𝑉𝑖+1. For every other item 𝑦 with 𝑉𝑖 ∈ 𝛼 (𝑦), the interval
following 𝑉𝑖 in 𝛼 (𝑦) must also (by the greedy choice) be 𝑉𝑖+1. That is, every item assigned

to 𝑉𝑖 is also assigned to 𝑉𝑖+1. If 𝑉𝑖+1 were to overlap 𝑉𝑖 , replacing 𝑉𝑖 by the interval 𝑉𝑖 \𝑉𝑖+1
(within 𝑇 ∗ and every 𝛼 (𝑥)) would give a valid solution with the same build cost but smaller

total query cost, contradicting the choice of C∗. So𝑉𝑖+1 starts just after𝑉𝑖 ends. By Property

2 above, 𝑉𝑖+1 is the only interval starting then.

(4) For every pair of intervals 𝑉 and 𝑉 ′ in 𝑇 ∗, either 𝑉 ∩ 𝑉 ′ = ∅, or one contains the other.
Assume otherwise for contradiction, that is, two intervals cross: 𝑉 ∩𝑉 ′ ≠ ∅ and neither

contains the other. Let [𝑎, 𝑎′] and [𝑏,𝑏′] be a rightmost crossing pair in𝑇 ∗, that is, such that

𝑎 < 𝑏 < 𝑎′ < 𝑏′ and no crossing pair lies in [𝑎 + 1, 𝑛]. By Property 1 above, [𝑎, 𝑎′] is in some

𝛼 (𝑥). Also 𝑎′ < 𝑛. Let [𝑎′ + 1, 𝑐] be the interval added greedily to 𝛼 (𝑥) following [𝑎, 𝑎′].
(It starts at time 𝑎′ + 1 by Property 3 above.) The start-time of [𝑏, 𝑏′] is in [𝑎, 𝑎′ + 1] (as
𝑎 < 𝑏 < 𝑎′), so by the greedy choice (for [𝑎, 𝑎′]) [𝑏,𝑏′] ends no later than [𝑎′ + 1, 𝑐]. Further,
by the tie-breaking in the greedy choice, 𝑐 > 𝑏′. So [𝑎′ + 1, 𝑐] crosses [𝑏, 𝑏′], contradicting
that no crossing pair lies in [𝑎 + 1, 𝑛].

By inspection of the definition of newest-first, Properties 2 and 4 imply that C′ is newest-first.

C′ is lightest-first. To finish we show that C′ is lightest-first. For any time 𝑡 ∈ [1, 𝑛], consider
any intervals𝑉 ,𝑉 ′ ∈ 𝑇 ∗ where𝑉 ends at time 𝑡 while𝑉 ′ includes 𝑡 but does not end then. To prove
that C′ is lightest-first, we show wt(𝑉) < wt(𝑉 ′).

The intervals of C′ are nested (Property 4 above), so𝑉 ⊂ 𝑉 ′ and the items assigned to𝑉 = 𝑉1 are

subsequently assigned (by Property 3 above) to intervals𝑉2, . . . ,𝑉ℓ within𝑉
′
as shown in Figure 10,

with 𝑉ℓ and 𝑉
′
ending at the same time. Since 𝑉 ′ does not end when 𝑉 does, ℓ ≥ 2. Consider

modifying the solution C′ as follows: remove intervals 𝑉 and 𝑉 ′ from 𝑇 ∗, and replace them by

intervals 𝑉 ′
1
and 𝑉 ′

2
obtained by splitting 𝑉 ′ so that 𝑉 ′

2
starts when 𝑉 started. (See the right side of

Figure 10.)

Reassign all of 𝑉 ′’s items to 𝑉 ′
1
and 𝑉 ′

2
. Reassign all of 𝑉 ’s items to 𝑉 ′

2
and unassign those items

from each interval 𝑉𝑖 . This gives another valid solution. It has lower query cost (as 𝑉 is gone), so

by the choice of C∗ (including the tie-breaking) the new solution must have strictly larger build

cost. That is, the change in the build cost, wt(𝑉) (1 − ℓ) + wt(𝑉 ′), must be positive, implying that

wt(𝑉 ′) > wt(𝑉) (ℓ − 1) ≥ wt(𝑉) (using ℓ ≥ 2). Hence wt(𝑉 ′) > wt(𝑉). □

Competitive Data-Structure Dynamization 1:23

5 Concluding remarks
This paper brings competitive analysis to bear on data-structure dynamization for non-uniform in-

puts, via two new online covering problems—Min-SumDynamization and𝑘-Component Dynamization—

for which it gives deterministic online algorithms with competitive ratios Θ(log∗𝑚) and 𝑘 , respec-
tively. The algorithms extend to handle lazy updates and deletions as they occur in industrial LSM

systems.

The paper also shows the existence of optimal offline solutions that are newest-first and lightest-

first. As mentioned in the introduction, one consequence is that Bentley and Saxe’s transforms

give optimal solutions (up to lower-order terms) for uniform inputs. Another is that, for Min-Sum

and 𝑘-Component Dynamization, optimal solutions can be computed in time 𝑂 (𝑛3) and 𝑂 (𝑘𝑛3),
respectively, because optimal newest-first solutions can be computed in these time bounds via

natural dynamic programs.

5.1 Open problems
Here are a few of many interesting problems that remain open. For 𝑘-Component Dynamization:

– Is there an online algorithm with competitive ratio 𝑂 (min(𝑘, log∗𝑚))?
– Is there an algorithm with competitive ratio 𝑂 (𝑘/(𝑘 − ℎ + 1)) versus OPTℎ (the optimal

solution with maximum query cost ℎ ≤ 𝑘)?
– Is there a randomized algorithm with competitive ratio 𝑜 (𝑘)?
– A memoryless randomized algorithm with competitive 𝑂 (𝑘)?

For Min-Sum Dynamization:

– Is there an 𝑂 (1)-competitive algorithm?

– Some LSM architectures only support newest-first algorithms. Is there a newest-first algo-

rithm with competitive ratio 𝑂 (log∗𝑚)?
– What are the best ratios for the LSM and general variants?

For both problems:

– For instances 𝐼 that occur in practice, the ratio max𝑡,𝑡 ′ wt(𝐼𝑡)/wt(𝐼𝑡 ′) (for 𝑡 ′ such that

wt(𝐼𝑡 ′) > 0) is often bounded. Does restricting to such instances allow smaller competitive

ratios?

– For the decreasing-weights and LSM variants, is there always an optimal newest-first

solution?

5.2 Variations on the model
Tombstones deleted during major compactions. Times when the cover C𝑡 has just one component

(containing all inserted items) are called full merges or major compactions. At these times, LSM

systems delete all tombstone items (even non-redundant tombstones). Our definition of LSM

𝑘-Component Dynamization does not capture this, but our definition of General 𝑘-Component

Dynamization does, so the algorithm B𝑘 in Figure 9 is 𝑘-competitive in this case.

Monolithic builds. Ourmodel underestimates query costs because it assumes that new components

can be built in response to each query, before responding to the query. In reality, builds take time.

Can this be modelled cleanly, perhaps via a problem that constrains the build cost at each time 𝑡

(and wt(𝐼𝑡)) to be at most 1, with the objective of minimizing the total query cost?

Splitting the key space. To avoid monolithic builds, when the data size reaches some threshold

(e.g., when the available RAM can hold 1% of the stored data) some LSM systems “split”: they divide

the workload into two parts—the keys above and below some threshold—then restart, handling

1:24 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

each part on separate servers. This requires a mechanism for routing insertions and queries by key

to the appropriate server. Can this (including a routing layer supporting multiple splits) be cleanly

modeled?

Other LSM systems (LevelDB and its derivatives) instead use many small (disk-block size)

components, storing in the (cached) indices each component’s key interval (its minimum and

maximum key). A query for a given key accesses only the components whose intervals contain the

key. This suggests a natural modification of our model: redefine the query cost at time 𝑡 to be the

maximum number of such components for any key.

Bloom filters. Most practical LSM systems are configurable to use a Bloom filter for each com-

ponent, so as to avoid (with some probability) accessing component that do not hold the queried

key. However, Bloom filters are only cost-effective when they are small enough to be cached. They

require about a byte per key, so are effective only for the smallest components (with a total number

of keys no more than the bytes available in RAM). Used effectively, they can save a few disk accesses

per query (see [26]). They do not speed up range queries (that is, efficient searches for all keys in a

given interval, which LSM systems support but hash-based external-memory dictionaries do not).

External-memory. More generally, to what extent can we apply competitive analysis to the

standard I/O (external-memory) model? Given an input sequence (rather than being constrained

to maintain a cover) the algorithm would be free to use the cache and disk as it pleases, subject

only to the constraints of the I/O model, with the objective of minimizing the number of disk I/O’s,

divided by the minimum possible number of disk I/O’s for that particular input. This setting may

be too general to work with. Is there a clean compromise?

The results below do not address this per se, but they do analyze external-memory algorithms

using metrics other than standard worst-case analysis, with a somewhat similar flavor:

[8] Studies competitive algorithms for allocating cache space to competing processes.

[10] Analyzes external-memory algorithms while available RAM varies with time, seeking an

algorithm such that, no matter how RAM availability varies, the worst-case performance is

as good as that of any other algorithm.

[17] Presents external-memory sorting algorithms that have per-input guarantees — they use

fewer I/O’s for inputs that are “close” to sorted.

[23, 37] Present external-memory dictionaries with a kind of static-optimality property: for any

sequence of queries, they incur cost bounded in terms of the minimum achievable by any

static tree of a certain kind. (This is analogous to the static optimality of splay trees [39, 49].)

5.3 Practical considerations
Heuristics for newest-first solutions. Some LSM systems require newest-first solutions. The Min-

Sum Dynamization algorithm Adaptive-Binary (Figure 3) can produce solutions that are not newest-

first. Here is one naive heuristic to make it newest-first: at time 𝑡 , do the minimal newest-first

merge that includes all the components that the algorithm would otherwise have selected to merge.

This might result in only a small cost increase on some workloads.

Major compactions. For various reasons, it can be useful to force major compactions at specified

times. An easy way to model this is to treat each interval between forced major compactions as a

separate problem instance, starting each instance by inserting all items from the major compaction.

Estimating the build cost wt𝑡 (𝑆). Our algorithms for the decreasing-weights, LSM, and general

variants depend on the build costswt𝑡 (𝑆) of components 𝑆 that are not yet built. The model assumes

these become known at time 𝑡 , but in practice they can be hard to compute. However, the algorithms

Competitive Data-Structure Dynamization 1:25

only depend on the build costs of components 𝑆 that are unions of the current components. For

the LSM variant, it may be possible to construct, along with each component 𝑆 , a small signature

that can be used to estimate the build costs of unions of such components (at later times 𝑡), using

techniques for estimating intersections of large sets (e.g. [24, 46]). It would be desirable to show that

dynamization algorithms are robust in this context—that their competitive ratios are approximately

preserved if they use approximate build costs.

Exploiting slack in the Greedy-Dual algorithm. For paging, Least-Recently-Used (LRU) is pre-

ferred in practice to Flush-When-Full (FWF), although their competitive ratios are equal. In

practice, it can be useful to tune an algorithm while preserving its theoretical performance guaran-

tee. In this spirit, consider the following variant of the Greedy-Dual algorithm in Figure 8. As the

algorithm runs, maintain a “spare credit” 𝜙 . Initially 𝜙 = 0. When the algorithm does a merge in

Line 2.1.3, increase 𝜙 by the total credit of the components newer than 𝑆0, which the algorithm

destroys. Then, at any time, optionally, reduce 𝜙 by some amount 𝛿 ≤ 𝜙 , and increase the credit of

any component in the cover by 𝜙 . The proof of Theorem 3.2, essentially unchanged, shows that the

modified algorithm is still 𝑘-competitive. This kind of additional flexibility may be useful in tuning

the algorithm. As an example, consider classifying the spare credit by the rank of the component

that contributes it, and, when a new component 𝑆 ′ of some rank 𝑟 is created, transferring all spare

credit associated with rank 𝑟 to credit[𝑆 ′] (after Line 2.1.4 initializes credit[𝑆 ′] to 0). This natural

Balance algorithm balances the work done for each of the 𝑘 ranks.

Acknowledgments
Thanks to Carl Staelin for bringing the problem to our attention and for informative discussions

about Bigtable.

References
[1] Pankaj K. Agarwal, Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. 2001. A Framework for Index Bulk Loading

and Dynamization. In Automata, Languages and Programming (Lecture Notes in Computer Science), Fernando Orejas,

Paul G. Spirakis, and Jan van Leeuwen (Eds.). Springer Berlin Heidelberg, 115–127.

[2] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. 2004. Approximating Extent Measures of Points. J.
ACM 51, 4 (2004), 606–635.

[3] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. 1987. Hierarchical Memory with Block Transfer. In 28th Annual
Symposium on Foundations of Computer Science. IEEE, 204–216. https://doi.org/10.1109/SFCS.1987.31

[4] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak Borkar, Yingyi Bu, Michael Carey, Inci

Cetindil, Madhusudan Cheelangi, and Khurram Faraaz. 2014. AsterixDB: A Scalable, Open Source BDMS. Proceedings
of the VLDB Endowment 7, 14 (2014), 1905–1916.

[5] Lars Arge. 2002. External Memory Data Structures. In Handbook of Massive Data Sets, James Abello, Panos M. Pardalos,

and Mauricio G. C. Resende (Eds.). Springer US, Boston, MA, 313–357. https://doi.org/10.1007/978-1-4615-0005-6_9

[6] Lars Arge and Jan Vahrenhold. 2004. I/O-Efficient Dynamic Planar Point Location. Computational Geometry 29, 2 (Oct.

2004), 147–162. https://doi.org/10.1016/j.comgeo.2003.04.001

[7] Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T. Goodrich. 2007. Deterministic Sampling and

Range Counting in Geometric Data Streams. ACM Transactions on Algorithms 3, 2 (May 2007). https://doi.org/10.

1145/1240233.1240239

[8] Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. 2000. Application-Controlled Paging for a Shared Cache.

SIAM J. Comput. 29, 4 (Jan. 2000), 1290–1303. https://doi.org/10.1137/S0097539797324278

[9] Michael A. Bender, Rezaul A. Chowdhury, Rathish Das, Rob Johnson, William Kuszmaul, Andrea Lincoln, Quanquan C.

Liu, Jayson Lynch, and Helen Xu. 2020. Closing the Gap Between Cache-Oblivious and Cache-Adaptive Analysis. In

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures. ACM, Virtual Event USA, 63–73.

https://doi.org/10.1145/3350755.3400274

[10] Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemiesfeh, Rob Johnson, and Samuel McCauley.

2014. Cache-Adaptive Algorithms. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 958–971.

https://doi.org/10.1109/SFCS.1987.31
https://doi.org/10.1007/978-1-4615-0005-6_9
https://doi.org/10.1016/j.comgeo.2003.04.001
https://doi.org/10.1145/1240233.1240239
https://doi.org/10.1145/1240233.1240239
https://doi.org/10.1137/S0097539797324278
https://doi.org/10.1145/3350755.3400274

1:26 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

[11] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani

Nelson. 2007. Cache-Oblivious Streaming b-Trees. In Proceedings of the ACM Symposium on Parallel Algorithms and
Architectures. ACM, New York, NY, USA, 81–92. https://doi.org/10.1145/1248377.1248393

[12] Jon Louis Bentley. 1979. Decomposable Searching Problems. Inform. Process. Lett. 8, 5 (June 1979), 244–251. https:

//doi.org/10.1016/0020-0190(79)90117-0

[13] Jon Louis Bentley and James B Saxe. 1980. Decomposable Searching Problems I. Static-to-Dynamic Transformation.

Journal of Algorithms 1, 4 (Dec. 1980), 301–358. https://doi.org/10.1016/0196-6774(80)90015-2

[14] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive Analysis. Cambridge University Press,

USA.

[15] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi. 2018. Accordion: Better Memory

Organization for LSM Key-Value Stores. Proceedings of the VLDB Endowment 11, 12 (Aug. 2018), 1863–1875. https:

//doi.org/10.14778/3229863.3229873

[16] Gerth Stolting Brodal and Rolf Fagerberg. 2003. Lower Bounds for External Memory Dictionaries. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

546–554.

[17] Gerth Stø lting Brodal, Rolf Fagerberg, and Gabriel Moruz. 2005. Cache-Aware and Cache-Oblivious Adaptive Sorting.

In Automata, Languages and Programming (Lecture Notes in Computer Science). Springer, Berlin, Heidelberg, 576–588.
https://doi.org/10.1007/11523468_47

[18] Hervé Brönnimann, Timothy M. Chan, and Eric Y. Chen. 2004. Towards In-Place Geometric Algorithms and Data

Structures. In Proceedings of the Symposium on Computational Geometry. ACM, New York, NY, USA, 239–246. https:

//doi.org/10.1145/997817.997854

[19] Niv Buchbinder, Shahar Chen, and Joseph Naor. 2014. Competitive analysis via regularization. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 436–444.

[20] Niv Buchbinder and Joseph Naor. 2009. The Design of Competitive Online Algorithms via a Primal—Dual Approach.

Foundations and Trends® in Theoretical Computer Science 3, 2–3 (2009), 93–263. https://doi.org/10.1561/0400000024

[21] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,

Andrew Fikes, and Robert E. Gruber. 2008. BigTable: A Distributed Storage System for Structured Data. ACM
Transactions on Computing Systems 26, 2 (June 2008), 4:1–4:26. https://doi.org/10.1145/1365815.1365816

[22] Y. Chiang and R. Tamassia. 1992. Dynamic Algorithms in Computational Geometry. Proc. IEEE 80, 9 (Sept. 1992),

1412–1434. https://doi.org/10.1109/5.163409

[23] V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan. 2002. Static Optimality Theorem for External Memory

String Access. In The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. 219–227.
https://doi.org/10.1109/SFCS.2002.1181945

[24] Reuven Cohen, Liran Katzir, and Aviv Yehezkel. 2017. A Minimal Variance Estimator for the Cardinality of Big Data

Set Intersection. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, Halifax NS Canada, 95–103. https://doi.org/10.1145/3097983.3097999

[25] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,

Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed

Database. ACM Transactions on Computing Systems 31, 3 (Aug. 2013), 8:1–8:22. https://doi.org/10.1145/2491245

[26] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings
of the ACM International Conference on Management of Data. ACM, New York, NY, USA, 79–94. https://doi.org/10.

1145/3035918.3064054

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available

Key-Value Store. In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles. ACM, New

York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[28] Andy Dent. 2013. Getting Started with LevelDB. Packt Publishing Ltd.
[29] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor, and Michael Stumm. 2017. Optimizing

Space Amplification in RocksDB. In Proceedings of the Biennial Conference on Innovative Data Systems Research. 3–12.
[30] D.T. Lee and F.P. Preparata. 1984. Computational Geometry—A Survey. IEEE Trans. Comput. C-33, 12 (Dec. 1984),

1072–1101. https://doi.org/10.1109/TC.1984.1676388

[31] Dan Feldman, Melanie Schmidt, and Christian Sohler. 2013. Turning Big Data into Tiny Data: Constant-Size Coresets

for k-Means, PCA and Projective Clustering. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1434–1453.

[32] Lars George. 2011. HBase: The Definitive Guide: Random Access to Your Planet-Size Data. O’Reilly Media, Inc.

https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.1007/11523468_47
https://doi.org/10.1145/997817.997854
https://doi.org/10.1145/997817.997854
https://doi.org/10.1561/0400000024
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/5.163409
https://doi.org/10.1109/SFCS.2002.1181945
https://doi.org/10.1145/3097983.3097999
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1109/TC.1984.1676388

Competitive Data-Structure Dynamization 1:27

[33] Goetz Graefe. 2010. Modern B-Tree Techniques. Foundations and Trends in Databases 3, 4 (2010), 203–402. https:

//doi.org/10.1561/1900000028

[34] Sariel Har-Peled and Soham Mazumdar. 2004. On Coresets for K-Means and k-Median Clustering. In Proceedings of the
ACM Symposium on Theory of Computing. ACM, New York, NY, USA, 291–300. https://doi.org/10.1145/1007352.1007400

See also https://doi.org/10.48550/arXiv.1810.12826.

[35] Anna R. Karlin, Claire Kenyon, and Dana Randall. 2003. Dynamic TCP Acknowledgment and Other Stories about e/(e

- 1). Algorithmica 36, 3 (July 2003), 209–224. https://doi.org/10.1007/s00453-003-1013-x

[36] Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vijay Gadepally, Matthew Hubbell, Peter.

Michaleas, Julie Mullen, Andrew Prout, Albert Reuther, Antonio Rosa, and Charles Yee. 2014. Achieving 100,000,000

Database Inserts per Second Using Accumulo and D4M. In 2014 IEEE High Performance Extreme Computing Conference
(HPEC). 1–6. https://doi.org/10.1109/HPEC.2014.7040945

[37] Pang Ko and Srinivas Aluru. 2007. Optimal Self-Adjusting Trees for Dynamic String Data in Secondary Storage. In

String Processing and Information Retrieval, Nivio Ziviani and Ricardo Baeza-Yates (Eds.). Vol. 4726. Springer Berlin

Heidelberg, Berlin, Heidelberg, 184–194. https://doi.org/10.1007/978-3-540-75530-2_17

[38] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Structured Storage System. SIGOPS
Operating Systems Review 44, 2 (April 2010), 35–40. https://doi.org/10.1145/1773912.1773922

[39] Caleb Levy and Robert Tarjan. 2019. A New Path from Splay to Dynamic Optimality. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1311–1330.

[40] Hyeontaek Lim, David G. Andersen, andMichael Kaminsky. 2016. Towards Accurate and Fast Evaluation of Multi-Stage

Log-Structured Designs. In Proceedings of the Usenix Conference on File and Storage Technologies. USENIX Association,

Berkeley, CA, USA, 149–166.

[41] Chen Luo and Michael J. Carey. 2020. LSM-Based Storage Techniques: a survey. VLDB J. 29, 1 (2020), 393–418.

https://doi.org/10.1007/s00778-019-00555-y

[42] Claire Mathieu, Rajmohan Rajaraman, Neal E Young, and Arman Yousefi. 2021. Competitive data-structure dynamiza-

tion. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2269–2287.

[43] Kurt Mehlhorn. 1981. Lower Bounds on the Efficiency of Transforming Static Data Structures into Dynamic Structures.

Mathematical systems theory 15, 1 (Dec. 1981), 1–16. https://doi.org/10.1007/BF01786969

[44] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree).

Acta Informatica 33, 4 (June 1996), 351–385. https://doi.org/10.1007/s002360050048

[45] Mark H. Overmars. 1987. The Design of Dynamic Data Structures. Number 156 in Lecture Notes in Computer Science.

Springer, Berlin.

[46] Rasmus Pagh, Morten Stöckel, and David P. Woodruff. 2014. Is Min-Wise Hashing Optimal for Summarizing Set

Intersection?. In Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM
Press, Snowbird, Utah, USA, 109–120. https://doi.org/10.1145/2594538.2594554

[47] Mendel Rosenblum and John K. Ousterhout. 1991. The Design and Implementation of a Log-Structured File System.

In Proceedings of the ACM Symposium on Operating Systems Principles. ACM, New York, NY, USA, 1–15. https:

//doi.org/10.1145/121132.121137

[48] Dennis G. Severance and Guy M. Lohman. 1976. Differential Files: Their Application to the Maintenance of Large

Databases. ACM Transaction on Database Systems 1, 3 (Sept. 1976), 256–267. https://doi.org/10.1145/320473.320484

[49] Daniel Dominic Sleator and Robert Endre Tarjan. 1983. Self-Adjusting Binary Trees. In Proceedings of the ACM
Symposium on Theory of Computing. ACM, New York, NY, USA, 235–245. https://doi.org/10.1145/800061.808752

[50] Carl Staelin. 2013. Personal communication.

[51] Jan van Leeuwen and Mark H. Overmars. 1981. The Art of Dynamizing. In Mathematical Foundations of Computer
Science (Lecture Notes in Computer Science), Jozef Gruska and Michal Chytil (Eds.). Springer Berlin Heidelberg, 121–131.

[52] Jeffrey Scott Vitter. 2008. Algorithms and Data Structures for External Memory. Number 2:4 in Foundations and Trends

in Theoretical Computer Science. Now Publishers, Boston.

[53] Ke Yi. 2012. Dynamic Indexability and the Optimality of B-Trees. J. ACM 59, 4 (Aug. 2012), 1–19. https://doi.org/10.

1145/2339123.2339129

[54] Neal E Young. 2000. K-medians, facility location, and the Chernoff-Wald bound. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms. 86–95.

A Deferred proofs
Lemma A.1. For the min-sum dynamization problem, the competitive ratio of the naive adaptation

of Bentley’s binary transform, which treats each insertion as a size-1 item and applies the transform, is
Ω(log𝑛).

https://doi.org/10.1561/1900000028
https://doi.org/10.1561/1900000028
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1007/s00453-003-1013-x
https://doi.org/10.1109/HPEC.2014.7040945
https://doi.org/10.1007/978-3-540-75530-2_17
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/BF01786969
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/2594538.2594554
https://doi.org/10.1145/121132.121137
https://doi.org/10.1145/121132.121137
https://doi.org/10.1145/320473.320484
https://doi.org/10.1145/800061.808752
https://doi.org/10.1145/2339123.2339129
https://doi.org/10.1145/2339123.2339129

1:28 Claire Mathieu, Rajmohan Rajaraman, Neal E. Young, and Arman Yousefi

Proof. Consider an input sequence in which an item of weight 𝑛2 is inserted in step 1, and an

item of weight 𝜀 for infinitesimally small 𝜀 > 0 is inserted in each step 𝑡 , for 2 ≤ 𝑡 ≤ 𝑛. The naive
adaptation of Bentley’s binary transform ignores the weights and treats each insertion as a size-1

item. Recall that the binary transform maintains at most one component of size 2
𝑖
for each integer

𝑖 . Since the input sequence inserts one item each step, for each 𝑡 that is a power of two, the binary

transform has exactly one component of size 𝑡 immediately after step 𝑡 (for instance, see Figure 1).

Thus, each step 𝑡 that is a power of two incurs build cost at least 𝑛2 (owing to the item of weight

𝑛2). This yields a total build cost of Ω(𝑛2 log𝑛).
An alternative solution, such as the one computed by the algorithm of Figure 3, maintains at most

two components, one consisting of the weight 𝑛2 item and the other consisting of any remaining

items. The build cost for step 1 is 𝑛2. For step 𝑖 , 2 ≤ 𝑖 ≤ 𝑛, the build cost is (𝑖 − 1)𝜀 since 𝑖 − 1 items

of weight 𝜀 are merged into a component. This yields a total build cost of at most 𝑛2 (1 + 𝜀/2). Since
there are at most two components, the query cost is at most 2𝑛. We thus have an Ω(log𝑛) bound
on the competitive ratio of the naive adaptation of the binary transform. □

Lemma A.2. The naive generalization of Bentley and Saxe’s 𝑘-binomial transform to 𝑘-Component
Dynamization has competitive ratio Ω(𝑘𝑛1/𝑘) for any 𝑘 ≥ 2.

Proof. Recall that the naive algorithm treats each insertion 𝐼𝑡 as one size-1 item, then applies the

𝑘-binomial transform. Consider inserting a single item of weight 1, then 𝑛−1 single items of weight

0. The naive algorithm merges its largest component Θ(𝑑) times where

(
𝑑
𝑘

)
≈ 𝑛, so 𝑑 = Θ(𝑘𝑛1/𝑘).

Each such merge costs 1. So the naive algorithm incurs total cost Ω(𝑘𝑛1/𝑘).
The optimum keeps the weight-1 item in one component, then does all remaining merges into

the other (size-zero) component, for total cost of 1. □

Received 1 January 1960; revised 1 January 1960; accepted 1 January 1960

	Abstract
	1 Introduction
	1.1 Background
	1.2 Problem definitions
	1.3 Statement of results
	1.4 Properties of optimal offline solutions

	2 Min-Sum Dynamization (Theorem 2.1)
	2.1 Part (i): the competitive ratio is O(* m)
	2.2 Part (ii): the competitive ratio is (* m)

	3 K-Component Dynamization and variants (Theorems 3.1–3.9)
	3.1 Lower bound on optimal competitive ratio
	3.2 Upper bound for k-Component Dynamization with decreasing weights
	3.3 Bootstrapping newest-first algorithms
	3.4 Upper bound for general variant

	4 Properties of optimal offline solutions
	5 Concluding remarks
	5.1 Open problems
	5.2 Variations on the model
	5.3 Practical considerations

	Acknowledgments
	References
	A Deferred proofs

