Pengfei Li

in : Linkedin | \clubsuit : Personal Page | \checkmark : pli081@ucr.edu

Education

Visiting Ph.D. in CMS, California Institute of Technology
Ph.D. in Computer Science, University of California, Riverside
M.S.E. in Robotics, Johns Hopkins University
B.E. in Electrical Engineering, Zhejiang University

Work Experience

Research Intern at Nokia Bell Labs Research on dynamic digital twins for warehouse management.

Research Area

Nonlinear Optimization; Machine Learning; Reinforcement Learning; Computational Photography.

Technical Skills

Programming Languages & Softwares: C++, Python, CUDA, Cython, MATLAB, PyTorch, Pandas **Selected Courses:** GPU architecture & Parallel Programming(A+), Vision as Bayesian Inference(A+), Optimization for Machine Learning (A), Artificial Intelligence(A), Applied Optimal Control (A-)

Selected Projects (Google Scholar)

- Research Assistant, California Institute of Technology, Pasadena, CA 06/2022 Present LADO: Learning-Augmented Decentralized Online Convex Optimization (SIGMETRICS 25')
 - * Overview: learning-augmented decentralized online optimization in a networked multi-agent system
 - * Proposed a ML-augmented policy (LADO) for decentralized online optimization, which selects actions only based on local online information; Provided a worst-case robustness guarantees with respect to the a safe baseline policy

Towards Environmentally Equitable AI via Geographical Load Balancing (eEnergy 24')

- * Overview: an equity-aware geographical load balancing algorithm to minimize AI's environmental footprint.
- * Addressed the carbon and water footprint of AI system by dynamically scheduling users' demand; Proposed an online equity-aware GLB algorithm; Empirically evaluated the algorithm with the workload trace of BLOOM.

Research Assistant, University of California, Riverside, CA 10/2020 – Present RCL: Robust Learning for Smoothed Online Convex Optimization (INFOCOM 23', NeurIPS 23')

- * Overview: a framework solving the general SOCO problems (e.g. multi-step switching costs and feedback delay).
- * Proposed a constrained-projection approach to combine untrusted ML predictions with a trusted expert online algorithm, which ensures a strict worst-case bound on performance; Demonstrated the performance of RCL on control applications (e.g. battery management for electric vehicle stations)

Reinforcement Learning for Online Bipartite Matching with Robustness Guarantees (ICML 23')

* Overview: a novel RL-based approach for edge-weighted online bipartite matching with robustness guarantees.
* Designed a novel online switching operation, which decides whether to follow the expert's or the RL's decision upon each online item arrival; Proposed a RL training algorithm by explicitly considering the online switching operation; Proven that our method is ρ-competitive against any given expert online algorithm; Provided empirical results for

some real applications (e.g. movie recommendation, spatial crowdsourcing). EC-L2O: Expert-calibrated learning to optimize (SIGMETRICS 22')

- * Overview: the first framework to address the "how to learn" challenge for machine learning augmented algorithm in smoothed online convex optimization (SOCO) problems
- * Proposed a new differentiable expert calibrator EC-L2O, which trains an ML-based optimizer by explicitly taking into account the downstream expert calibration; Provided theoretical analysis for EC-L2O, which bounds tail cost ratio and benefits the average performance; Conducted case study for sustainable datacenter demand response.

Research Assistant, Johns Hopkins University, Baltimore, MD

3D Human Pose Estimation in Crowded Scenes (ECCV'20 spotlight)

- $\ast\,$ Overview: a multi-person 3D pose estimation method in crowded scenes
- * Utilized geometric constraints to solve ambiguity in localizing and matching human keypoints across multiple views, caused by crowded scenes; Formulated crowded human pose reconstruction as a graph optimization problem, considering prior distribution of human shape in 3D, iteratively refine human shape prior with 3D reconstruction results; Surpassed existing methods in crowded scenes evaluated with the MSCOCO keypoint metric

Car Pose Estimation with Context Constraints. (preprint)

- * Overview: a car pose estimation framework in uncalibrated monocular camera, using global geometric context
- * Proposed an iterative optimization scheme to reinforce consistency between global context and local appearance; Demonstrated our framework can significantly improve the performance of 6-DoF pose estimation using our accurate global context and focal length; Outperformed the state-of-the-art car activity recognition results with car pose estimation

06/2024 - present 09/2020 - present 08/2018 - 05/202009/2014 - 06/2018

06/2023 - 09/2023

01/2019 - 05/2020