
CS130 LAB: 3 – Part 1: Introduction to OpenGL

Open Graphics Library (OpenGL) is a cross-platform API for fast rendering of 2D and 3D graphics.
OpenGL typically runs on a graphics processing unit (GPU) and it is optimized to render multiple images
per second. For this reason, OpenGL is often used in game engines and other applications that require
interactivity with the user.

The goal of this lab is to get you started with OpenGL by implementing Phong’s illumination model into
special OpenGL programs called shaders.

The process is summarized as follows:

1. OpenGL program is written in C/C++ and consists of setting up the scene (camera position,
objects, lights, among others).

2. The OpenGL program is also responsible for reading a text file with shader code, compile it and
send it to the GPU for execution.

3. The language used in the shader program is very similar to C and is called OpenGL shader
language (GLSL)

4. The shader typically runs on the GPU and the shader determines the position and color of
vertices. Vertices are the points that constitute a geometry. For instance, a cube has 8 vertices.

5. There are two types of shaders: vertex and fragment.
a. The vertex shader receives vertices and apply transformation to these vertices (scale,

translation, rotation, among others).
b. The fragment shader receives fragments and determines the color of that fragment.

Fragments are transformed vertices outputted by the vertex shader after rasterization.

The left diagram below depicts the process of loading the vertex and fragment shaders in the OpenGL
C/C++ code. The right diagram depicts the vertex and fragment shaders.

Taken from http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/pipeline-overview/.

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/pipeline-overview/

1. Consider the OpenGL code diagram depicted in the last page. Describe briefly with your own words
each one of the following functions. Look at the OpenGL documentation for reference.

Llink: https://www.khronos.org/registry/OpenGL-Refpages/gl4/
Google: “opengl 4 references”

glCreateShader

input:

output:

glShaderSource

input:

glCompileShader

input:

glCreateProgram:

output:

glAttachShader

input:

glLinkProgram:

input:

glUseProgram:

input:

https://www.khronos.org/registry/OpenGL-Refpages/gl4/

2. Read the comments and order the lines of code in correct order for loading shaders.
Fill in the blanks afterwards.

A.glCompileShader(_____________________); // compile fragment shader
B.glAttachShader(_______________,______________); //attach vertex shader to program
C.GLuint vertex_id = glCreateShader(__________________); // create vertex shader
D.glCompileShader(_____________________); //compile vertex shader
E.glAttachShader(_______________,fragment_id); //attach program shader to program
G.glShaderSource(_____________________,1,&vertex_shader_file,NULL); //source vertex shader
F.glLinkProgram(______________); //link program
H.GLuint fragment_id=glCreateShader(_________________); // create fragment shader
I.glShaderSource(__________________,1,&fragment_shader_file,NULL); //source fragment shader
J.GLuint program = glCreateProgram();

Ordering:__ C G D H I A J B E F
(The answer may vary.)

3. Consider the following GLSL vertex (left) and fragment (right) GLSL codes.

void main() {

 gl_Position = gl_ProjectionMatrix
 * gl_ModelViewMatrix

 * gl_Vertex;
 gl_FrontColor =
 vec4(0, 1, 0, 1);

}

vec4 light_color = vec4(1, 0, 0, 1);

void main() {

 gl_FragColor = gl_Color;
}

The vertex shader receives a vec4 gl_Vertex and returns a vec4 gl_Vertex.
gl_ProjectionMatrix and gl_ModelViewMatrix are transformation matrices given by OpenGL.

The fragment shader receives gl_FrontColor from the vertex shader and returns the color of the
fragment as gl_FragColor.

3.1. What is the output color of the fragment shader?

gl_FraColor = (____,____,____,____)

3.2. Consider an object with color green represented by the RGB color vector (0, 1, 0) and a blue light
source with color (0, 0, 1). If we illuminate the object with the light, what is the output color?

CS130 LAB: 3 – Part 2: Phong model

Write the equations for the the Phong model components. Draw any missing vectors in the figure below.

Ambient:

Diffuse:

Specular:

In the figure below, vector is the reflection of vector from the surface, and vector is the unit-length
normal of the surface.

Write the reflection vector in terms of and , following the steps below:
Step 1: Formulate vector , which is the projection of on , in terms of and .

=

Step 2: Formulate vector , in terms of and

=

Step 3: Write vector in terms of , and (you do not have to use all of them)

=

Step 4: Substitute and , with your results from steps 1 and 2, and write in terms of and only.

=

https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=d%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=d%0
https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=d%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=d%0
https://www.codecogs.com/eqnedit.php?latex=r%0
https://www.codecogs.com/eqnedit.php?latex=l%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=r%0

In order to write Phong’s model in your shader, you can use:

struct gl_LightSourceParameters {

vec4 ambient;

vec4 diffuse;

vec4 specular;

vec4 position;

};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters {

vec4 ambient;

};

uniform gl_LightModelParameters gl_LightModel;

struct gl_MaterialParameters {

vec4 ambient;

vec4 diffuse;

vec4 specular;

float shininess; // this is the exponent of the specular

component

};

uniform gl_MaterialParameters gl_BackMaterial;

You may also use the following functions: max(_,_); dot(_,_); normalize(_);
You can assume the camera position is at the origin, i.e., at coordinates (0, 0, 0).

CS130 LAB: 3 – Part 3: Notes on Assignment 1 - Checkpoint 2

If you implemented plane intersection, then you have test 04 working.

The next steps are:

1. Phong shader
2. Shadows

Starting with the Phong shader
(Implement Shade_Surface in phong_shader.cpp).

Recall Phong shader consists of 3 components: ambient, diffuse, specular.
You will need to calculate each component and add them all to the color that is returned.

Ambient: combination of three variables (you have access to all of them in Shade_Surface)

1. world.ambient_color
2. world.ambient_intensity
3. color_ambient

Diffuse: is proportional to the cosine of the angle between the normal (N) and the vector from the
intersection point to the light source (L). This term is the intensity of the diffuse component.

❏ The intersection point is calculated as the point in the ray with the earliest hit t. You can get any
point on a ray using the function ray.Point(t).

❏ You may need to calculate the intersection point in your Cast_Ray before passing it to the
shader.

❏ Notice the normal should be pointing to outside of your object. If the nearest point is exiting the
object, you may need to invert the normal so it is facing the right direction.

❏ Normalize the vectors when calculating the cosine using dot product.
❏ Check if the light source is behind the intersection point on the surface. In this case, the diffuse

intensity is zero. You can check for this by taking max(dot(L,N), 0).
❏ You have access to color_diffuse in your Phong shader. This should be combined with the diffuse

intensity.
❏ You will also need to compute the color of the light source and combine it in your diffuse

component. In particular, the intensity of the light should decay proportional to the square
distance between the intersection point and the light source.

❏ You can get the light color by calling the function Emitted_Light passing any ray.

Specular: proportional to the cosine of the angle between the reflected direction and the vector from the
intersection point to the camera position (C).

❏ You can calculate the reflected direction using R=(2∗(L⋅N)∗N−L). Make sure L and R are
normalized.

❏ The specular intensity is max(dot(R,C),0)α, where α is given to you as the specular_power
variable.

❏ The final color is calculated similarly to the diffuse component by using the light_color with decay
proportional to the square of the distance to the light source.

Shadows:

❏ In your Phong shader, check if shadows should be calculated by using the variable
world.enable_shadows.

❏ If world.enable_shadows is true, then you should check if there is an object between your
intersection point and the light source (You can use Closest_Intersection for this).

❏ If there is an object blocking all your light sources, then you should return only the ambient light
component.

