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ABSTRACT
A fundamental building block in any graph algorithm is a graph con-
tainer – a data structure used to represent the graph. Ideally, a graph
container enables efficient access to the underlying graph, has low
spaceusage, andsupportsupdating thegraphefficiently. In thispaper,
we conduct an extensive empirical evaluation of graph containers de-
signed to support running algorithms on large graphs. To our knowl-
edge, this is the first apples-to-apples comparison of graph containers
rather than overall systems, which include confounding factors such
as differences in algorithm implementations and infrastructure.

We measure the running time of 10 highly-optimized algorithms
across over 20 different containers and 10 graphs. Somewhat sur-
prisingly, we find that the average algorithm running time does not
differmuch across containers, especially those that support dynamic
updates. Specifically, a simple container based on an off-the-shelf
B-tree is only 1.22× slower on average than a highly optimized
static one. Moreover, we observe that simplifying a graph-container
Application Programming Interface (API) to only a few simple func-
tions incurs a mere 1.16× slowdown compared to a complete API.
Finally, we also measure batch-insert throughput in dynamic-graph
containers for a full picture of their performance.

To perform the benchmarks, we introduce BYO, a unified frame-
work that standardizes evaluations of graph-algorithm performance
across different graph containers. BYO extends the Graph Based
Benchmark Suite (Dhulipala et al. 18), a state-of-the-art graph al-
gorithm benchmark, to easily plug into different dynamic graph
containers and enable fair comparisons between them on a large
suite of graph algorithms. While several graph algorithm bench-
marks have been developed to date, to the best of our knowledge,
BYO is the first system designed to benchmark graph containers.
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1 INTRODUCTION
A fundamental design decision in the process of developing any
graph algorithm is the choice of the graph container, that is the
data structure that represents the graph. This decision can greatly
affect both the running time as well as the space usage of both the
graph container and the entire algorithm. A classic example used in
algorithms textbooks is the difference between an adjacency matrix
and an adjacency list. The former is simply a matrix which uses 𝑛×𝑛
bits to store adjacency between all pairs of 𝑛 graph vertices. While
it supports very efficient queries about the existence of any edge, its
space usage is often prohibitive, especially when applied to sparse
graphswhere thenumberof edges𝑚 is close to thenumberofvertices
𝑛. On the other hand, adjacency list, whilemuchmore space efficient,
can require up toΘ(𝑛) time to determine the existence of any edge.

In practice, it turns out that algorithms typically do not need
to query for the existence of a given edge, and thus the adjacency
list idea is more commonly used in practice. Specifically, the usual
format of choice is the Compressed Sparse Row (CSR) format [78],
which is an array-based version of the adjacency list format. CSR
uses an array𝐴 of𝑚 neighbor ids to store𝑚 edges. The neighbors of
each vertex 𝑣 form a contiguous fragment of𝐴, and so for each vertex
𝑣 CSR format additionally stores where this fragment of𝐴 is located.
As a result, CSR requires𝑂 (𝑚+𝑛) space to represent a graph of 𝑛
vertices and𝑚 edges. Due to its simplicity and good spatial locality,
CSR allows accessing the graph very efficiently. However, updating
CSR is prohibitively expensive, as inserting a single edge can require
Θ(𝑚) timedue to the fact that all edges are stored in a single flat array.

To address this limitation, a significant research effort over the
past decade has centered on efficient dynamic-graph containers and
their corresponding systems [33, 35, 36, 40, 55, 58, 67, 79, 82, 84, 85].A
dynamic-graph system is made up of two parts: the container and the
programming framework. The container stores the graph topology
and handles changes to the graph, while the programming frame-
work uses an Application Programming Interface (API), or a spec-
ification for how two system components communicate with each
other, provided by the container to express and perform analytics.

Despite the impressive body of existing work on dynamic-graph
systems and containers, at present it is essentially impossible to an-
swer the very basic question ofwhich container is appropriate for a
givengraphapplication.Amajor reason for this situation is thatmost
if not all papers introducing new dynamic graph containers perform
end-to-end comparisons with existing systems. As a concrete exam-
ple, prior evaluations of the dynamic-graph systems SSTGraph [82]
and CPAM [35] compare with earlier dynamic-graph systems such
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Figure 1: Relationship between BYO, graph-algorithm frameworks,
and dynamic-graph containers.

as Aspen [36], but change not only the container but also impor-
tant graph-algorithm details, making the source of any measured
improvements unclear. A second question of no less importance
that is unanswered by existing work is howmuch performance can
be gained by using very simple “off-the-shelf” data structures (e.g.,
those from the standard library) to build dynamic graph systems.

In this paper, we introduce Bring Your Own (BYO), a unified pro-
gramming framework for benchmarking and evaluating graph con-
tainers. We use BYO to perform a comprehensive and fair benchmark
of 27 different graph containers, which include both state-of-the-art
data structures such as CPAM [35] and SSTGraph [82], as well as
off-the-shelf data structure libraries such as those from the std stan-
dard library and Abseil [2], an open-source standard library from
Google. These generic data-structure libraries provide a reference
implementation and demonstrate howmuch performance is left on
the table with simple structures and minimal programming effort.
Our benchmark involves running 10 fundamental graph algorithms
on 10 large graph datasets with up to 4.2B edges.

Fairness of graph-container evaluation.An interesting, and per-
haps surprising finding of our benchmark is the fact the algorithm
performance does not vary drastically between the different contain-
erswhenaveragingoverall graphsandalgorithms (seeFigure2).This
relatively small performance difference between different graph con-
tainers makes them particularly challenging to benchmark, because
a reported performance gain in a proposed dynamic-graph system
may be the result of many factors: the container might be better, the
systemmay have better algorithm implementations, or the system
may use a better language, compiler, or parallelization library (e.g.,
pthreads [66], OpenMP [29], Cilk [20], etc.). We note that varying
all of these components can lead to performance variations which
are at least as large in magnitude as the performance differences we
observe between many of the graph containers that we compare.
Hence, to truly evaluate two graph containers in an apples-to-apples
way, BYO ensures that the framework and all other infrastructure
(i.e., parallelization library, language, compiler) is consistent across
all benchmarks. While this is a seemingly natural requirement, it
was not fully met in existing papers evaluating graph systems.

Simplified graph-container evaluation. BYO is based on the
Graph Based Benchmark Suite (GBBS) [37, 38], a high-performance
graph-algorithm framework implemented on top of a CSR container.
BYO provides a minimal translation layer between GBBS and graph
containers (e.g., Aspen, SSTGraph, etc.). In other words, BYO in-
troduces a simple and abstract container API, i.e., the API that the

containers need to implement, and implements the popular Ligra/G-
BBS interface1 using this API. This enables users to easily bring their
own graph container and connect it to the programming framework
(it suffices if the container implements BYO’s container API), as well
as to study their own new algorithms (as long as they are expressed
in the Ligra/GBBS interface). BYO is able to represent directed, undi-
rected, weighted and unweighted graphs. Figure 1 illustrates the re-
lationship between BYO and other parts of a dynamic-graph system.

We note that the graph container API defined by BYO is very
simple. Specifically, we find that to implement a wide variety of
the primitives in GBBS, all the graph container developer needs to
implement is the map primitive (excluding basic query functions
such as num_vertices or num_edges).Map is a functional primitive
that applies an arbitrary function f over a collection of elements.
As we shall see, setting different functions in a map can express
other functionality such as reduce and count. A map can easily be
implemented with basic iterators such as those in the C++ standard
template library (STL) [51, 65] by applying the function f to each
element in turn. This feature of BYO greatly simplifies the process
of including a new graph container in the benchmark.

For comparison, the graph container API (that the container must
support) from GBBS defines 10 primitive neighborhood operations
(e.g., map, reduce, scan, etc.). Similarly, the GraphBLAS specifica-
tion [32] includes 12 operations (e.g., mxm, assign, apply, etc.) for
representing graph algorithms.

The main technical challenges in BYO were 1) identifying the
correct minimal APIs that can generalize to large classes of graph
containers and algorithms, 2) identifying all the code in the original
GBBS implementation thatmakes assumptions about the underlying
container and converting them to use modern C++ features that can
determine which container functionality to use at compile-time to
maximize performance, and 3) simplifying the design to make the
translation smooth from the container-developer’s point of view.

We built BYO based on GBBS because GBBS has been shown
to support a wide variety of theoretically and practically efficient
graph algorithms with better performance than alternatives. As
we will show in Section 6, we verify these results and show that
GBBS achieves 1.06−4.44× speedup on average compared to other
frameworks (e.g., Ligra [73] and GraphBLAS [22, 30, 31, 53]).

Benchmark results. We perform a cross-cutting evaluation of
graph containers and frameworks along several distinct axes.

The first studies the impact of the graph API when fixing the
underlying container. In particular, we study performance when
moving from a very simple API (e.g., only supporting map) to a rich
API supporting sophisticated traversal primitives. Our main finding
is BYO using a few very basic primitives (e.g., map, degree, and the
number of edges) is only 1.16× slower on average than BYO using
the full API. However, more advanced primitives, e.g., parallel map,
are necessary to achieve the best performance on specific instances
such as on skewed graphs.

The second axis evaluates existing graph-algorithm frameworks
compared to BYO to ensure that BYO is a good starting point for a
large-scale evaluation and achieves high performance on a variety of
1GBBS is an iteration of Ligra with a richer interface and more algorithm
implementations.
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Figure 2: Slowdown of each container compared to CSR. Each point
(𝑥,𝑦) for a given graph container2means that the container was at
most 𝑥 times slower than CSR on 𝑦% of experiments. A line going up
faster implies that the container achieves closer performance relative
to CSR onmore experiments.We find that almost all structures are
able to perform themajority of the experiments with atmost a 1.4×
slowdown over CSR. std::set and absl::* are off-the-shelf containers,
while the others are optimized. Details on the graph containers can
be found in Section 5.

algorithms. We find that on average, BYO achieves competitive per-
formance on graph algorithms when compared to Ligra [73], Graph-
BLAS [22, 30, 31, 53], andGBBS [37, 38],which arehigh-performance
state-of-the-art frameworks.

The third axis studies the impact of different containers by fixing
the algorithm using the BYO API and varying the container. Our
results here have interesting ramifications for the future design of
dynamic graph containers, aswell as users of dynamic graph contain-
ers. To highlight just one example, we find that users wishing to use
simple “off-the-shelf” (i.e., not tailor-made) data structures can build
dynamic graph containers using Abseil B-trees while only incurring
a 1.22× slowdown on average across all algorithms and graphs over
the best static graph container (CSR). However, off-the-shelf data
structures suffer more than specialized data structures in the worst
case on certain problem instances. For example, as shown in Figure 2,
the Abseil B-tree incurs more slowdown onmore problem settings
relative to CPAM [35], a specialized data structure.

BYO addresses previous evaluation issues due to different frame-
work implementations by making sensible optimizations for graph-
algorithm performance accessible to all containers that use BYO.
For example, the authors of the SSTGraph graph container imple-
mented the Ligra framework on top of SSTGraph [82] to compare
with Aspen [36], which also implements Ligra. However, the Ligra
implementation in SSTGraph contains additional optimizations for
certain algorithms that enable the overall system to achieve better
performance on certain workloads. Specifically, SSTGraph found
that one of these optimizations helped by 20% on Pagerank and 6%
on Connected Components [82]. These optimizations are localized
in the programming framework and could theoretically be applied
to any dynamic-graph container; by incorporating them, we be-
lieve that BYO is the first system that can fairly and reliably isolate
performance improvements to the graph container.

The fourth axis evaluates the performance of the dynamic graph
containers when performing batch edge insertions and deletions.
BYO also integrates numerous off-the-shelf containers (e.g., Abseil
flat hash sets and B-trees), providing a more nuanced picture of
2The set data structures (std::set, absl::btree_set, absl::flat_hash_set, and
CPAM) use the inline optimization described in Section 4.
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Figure 3: The throughput of inserts for different batch sizes. Of the
data structures in this plot, std::set and absl::*, are off-the-shelf
containers, while the others are optimized. Details on the different
graph containers can be found in Section 5.

dynamicgraph containers built using standarddata structures that to
the best of our knowledge is absent in prior evaluations (see Figure 3).

2 RELATEDWORK

Graph-algorithm benchmarks and frameworks.Many graph-
algorithm frameworks have appeared in the literature, but they
have focused on graph-algorithm performance rather than con-
tainers. For example, several static-graph-algorithm frameworks
such as Ligra [73], GraphBLAS [22, 30, 31, 53], Galois [3, 54], and
GBBS [37, 38] deliver state-of-the-art running times, but are limited
to using CSR as the underlying graph representation.

The GAP benchmark suite [16] (and other benchmark suites such
as LDBC graphalytics [46]) has had great success in standardizing
evaluations for graph algorithms. For example, it has been used to
benchmark [11] several static-graph-algorithm frameworks includ-
ing GraphBLAS as well as DSLs like GraphIt [88]. However, GAP
was not designed to benchmark dynamic containers in a general way.
Specifically, the GAP specification does not describe what a graph
container API should look like. Moreover, the reference implemen-
tations in GAP are tightly knit with a CSR graph container.

Further, there are lines of research focused on developing incre-
mental [27, 50, 62–64, 72] and dynamic [9, 25, 43, 49, 59, 60, 70, 81]
algorithms, or designing highly efficient graph containers [35, 36, 40,
47, 67, 79, 82–85] with supports of dynamic updates to the graphs.
However, all of these works either create an ad-hoc framework with
specialized optimizations, or implement only a few algorithms and
compare to a few of the recent works. This leads to comparisons
between entire systems and not just between graph containers.

Importance of benchmarking graph containers alone.
Significant research effort has been devoted to developing and

benchmarking graph containers and their corresponding systems.
These works have reported significant speedups:
• SSTGraph finds a 1.6× speedup over Aspen [82].
• Terrace finds a 1.7−2.6× speedup over Aspen [67].
• Aspen finds 1.8 − 15× speedup over prior dynamic data struc-

tures [36].
• VCSR finds as 1.2−2× speedup over PCSR [10].
• PPCSR finds a 1.6× speedup over Aspen [85].
• CompressGraph finds a 2× speedup over Ligra+ [26]
• Teseo finds frequent speedups of at least 1.5× over other graph

containers [33]
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However, it is likely that much of the improvements seen in these
works are from factors other than the graph container itself.
Pros and cons of different graph containers.Aside from rawper-
formance comparisons, graph containersmay support different func-
tionality and storage guarantees. A fewmajor distinctions include:
• Compressed vs uncompressed. CPMA [83], CPAM [35], and

Aspen [36] all support compression of the graph, which has been
shown in prior work to help performance and space usage. In
contrast, systems like Terrace [67] are uncompressed and use sig-
nificantlymore space,whichmaynotworkonmuch larger graphs.

• Functional vs in-place. Tree-based containers such as CPAM
and Aspen may support functional updates, which enable con-
current queries and batch updates on the graph. Most containers
(e.g., Terrace, PPCSR, etc.) store the graph in place, so queries and
updates must happen in a phased manner.

• Batch updates vs concurrent updates. Some graph containers
(e.g., CPMA, CPAM, and Aspen) provide native support for batch
updates, which apply a set of updates to the container as one
operation. Batch updates improve update throughput at the cost
of latency compared to concurrent updates, where the updates
may happen simultaneously, but each individual update is atomic.
The focus of this paper is on performance alone, so some of these

differences (e.g., update type or functional storage) are not reflected
in the results.

3 BACKGROUND
This section provides background on graphs and their representa-
tions necessary to understand the data structures studied in this
paper. It also reviews the GBBS framework and describes how it uses
different API components to express graph algorithms. Throughout
this paper, we use the standard shared-memorymodel of parallelism
in which we have a set of threads that access a shared memory.
Graphs.A graph is a way of storing objects as vertices and connec-
tions between those objects as edges. For simplicity we focus on
unweighted graphs. Formally, an unweighted graph 𝐺 = (𝑉 ,𝐸) is
a set of vertices 𝑉 and a set of edges 𝐸. We denote the number of
vertices 𝑛= |𝑉 | and the number of edges𝑚= |𝐸 |. Each vertex 𝑣 ∈𝑉
is represented by a unique non-negative integer less than |𝑉 | (i.e.
𝑣 ∈ {0,1,..., |𝑉 | −1}). Each edge is a 2-tuple (𝑢,𝑣) where 𝑢,𝑣 ∈𝑉 . For
each edge, we refer to the vertex 𝑢 as the source and the vertex 𝑣
as the destination. For undirected graphs, for each edge (𝑢,𝑣) there
exists an edge (𝑣,𝑢). In the undirected case, the neighbors of a vertex
𝑢 are all vertices 𝑣 such that there exists an edge (𝑢,𝑣). For aweighted
graph each edge is a 3-tuple (𝑢,𝑣,𝑤). Finally, the degree of a vertex
in a graph is the number of neighbors it has.

3.1 Graph representations
A graph whose vertex set is {0,...,|𝑉 |−1} can be thought of and rep-
resented as a sequence 𝑠1,...,𝑠 |𝑉 |−1 of neighbor sets, where a neighbor
set 𝑠𝑖 stores all of the neighbors of a vertex 𝑖 .
Storing graphs with set containers. The sequence of sets abstrac-
tion leads to a classical design for a graph storage format: a list of
pointers (one for each vertex) to pre-selected data structures holding
each vertex’s neighbors. Graph-container developers can trade off
performance properties (e.g., insert vs scan) based on the choice of
per-vertex data structures.

A set container is any data structure that stores a unique collection
of elements andcanbeused to storevertexneighbors.Examplesof set
containers include red-black trees [28], B-trees [14], hash maps [28],
and arrays. For the purposes of this paper, we define a set container
to support the following operations:
• insert(e)/remove(e): Insert/delete element e into/from the set.
• map(f): Apply the function f to all elements of the set (can be

implemented with C++ style iterators).
• size(): Return the number of elements in the set.

These functionalities are naturally expected from any set con-
tainer data structure. For example, the C++ standard template library
(STL) [51, 65] includes these functions (as well as others) in their
container specification.

Compressed graphs. To handle increasingly large graphs, sev-
eral graph-processing systems [35–37, 74] include support for com-
pressed graph formats. Specifically, they provide support for graphs
where neighbor lists are encoded using byte codes [18, 19] and a
parallel generalization [74] of byte codes. Byte codes store a vertex’s
neighbor list by difference encoding [76] consecutive vertices, with
the first vertex difference encoded with respect to the source. Com-
pression enables larger graphs to fit inmemory and reducesmemory
traffic, which may help during parallel processing [35–37, 74].

All of the compressed graph representations in this paper use
difference encoding and byte codes to compress the graphs.

3.2 GBBS API
GBBS [37] is a shared-memory graph processing framework based
on Ligra [73] that provides a benchmark suite of over 20 non-trivial
graph problems. GBBS uses a shared-memory approach to parallel
graphprocessing inwhich theentiregraph is stored in themainmem-
ory of a singlemulticoremachine. Graphs inGBBS are assumed to be
stored in the compressed sparse row (CSR) format described earlier.
The underlying neighbors stored can be stored either uncompressed,
or using a compressed format.

Vertex datatypes and primitives. The vertex datatype interface
provides functional primitives over vertex neighborhoods, such as
map, reduce, scan, count (a special case of reduce where the map
function is a boolean function), as well as primitives to extract a
subset of the neighborhood satisfying a predicate (filter), among
other primitives.

VertexSubsets.GBBS uses the vertexSubset datatype from Ligra,
which represents a subset of vertices in the graph. A subset can
either be sparse (represented as a collection of vertex IDs) or dense
(represented as a boolean array or bit-vector of length𝑛, the number
of vertices in the graph).

EdgeMap. edgeMap is a basic graph processing primitive useful for
performing graph traversal. The edgeMap primitive takes as input
a frontier, or vertexSubset. It then applies a user-defined function to
generate a new frontier consisting of neighbors of the input frontier.
For example, in a breadth-first search, the user-defined primitive
emits a neighbor in the output frontier if it has not yet been visited.
GBBS includes several generalizationsof edgeMap that aggregate the
results of the edgeMap at the source vertex, aswell as generalizations
that return a subset of the neighbors of the input vertexSubset.
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Figure 4: Relationship between BYO framework, graph containers,
and graph algorithms (via GBBS).

4 BYOAPI DESIGNAND IMPLEMENTATION
The goal of BYO is tomake it as easy as possible for a graph-container
developer to use any data structure in a high-performance and gen-
eral graph programming framework. This section details the “set”
and “graph container” APIs that BYO exposes to connect with ar-
bitrary graph data structures. It also describes the changes that we
made to the GBBS implementation to be agnostic to the underlying
data structure. Finally, we will discuss framework-level optimiza-
tions that have appeared in various places throughout the literature
that we have collected in BYO. For simplicity, we will describe all of
the API components in terms of unweighted graphs.

BYO provides a translation layer between graph containers and
GBBS. Figure 4 illustrates the relationship between data structures,
BYO, and GBBS components. Specifically, BYO translates between
the data structure API and the read-only GBBS neighborhood oper-
ators such as map, reduce, and scan (Section 3.2). This paper focuses
on these operators to strike a balance between simplicity and expres-
siveness.

4.1 NeighborSet API
As described in Section 3, a graph can be represented as a sequence of
setswhere each set contains the edges incident to a single vertex, that
is a neighbor set. Many graph representations, such as the adjacency
list in Stinger [40], the tree of trees in Aspen [36] and CPAM [35],
directly implement this two-level structure.

We now describe the NeighborSet API, a high-level description
of the necessary functionality for a single vertex neighbor set. The
NeighborSet API enables easy parallelization over the vertex set,
since all of the neighbor sets are independent.

Figure 5 illustrates the relationship between the vertex level
(maintained by BYO) and the set data structures (implemented by
the developer). BYO abstracts away the details of choosing a data
structure for both the vertex sequence and neighbor sets and en-
ables the user to just implement the neighbor set. Currently, BYO
implements the vertex sequence as an std::vector for simplicity,
but could theoretically use any set data structure.

We find that the minimal API necessary for a neighbor set data
structure to implement the GBBS operators which do not change the
neighbor sets is to expose a size function and an iteratorwhich
supports sequentially iterating through the elements one by one, i.e.,
a forward iterator. These are two basic functionalities are naturally
expected from set implementations. For example, the C++ standard
template library (STL) [51, 65], a widely-used standard library of
basic utilities, includes both of these (among others).

Figure 5: Data structure and inline optimization using the set API.

Required functionality for algorithms.
• iterator or map(f): Apply the function f to all elements in the

set. As mentioned in Section 1, an iterator can be used to imple-
ment map by simply iterating through all elements in the set and
applying the function f.

• size(): Return the number of elements in the set.
Optional functionality for algorithms.
• map_early_exit(f) (if no iterator): Apply the function f to the

elements in the set until f returns true. We can implement it with
an iterator by exiting the iteration when f returns true.

• parallel_map(f): Apply the functionf in parallel to all elements
in the set.

• parallel_map_early_exit(f): Apply the function f in parallel
to the elements in the set until f returns true. Because the iter-
ations are running in parallel, other threads may continue even
after one returns true.

Required functionality for updates. In addition to providing read
access to the graph, dynamic-graph representations must also sup-
portupdates (inserts / deletes).Therefore,BYOrequires the following
standard API if the data structure supports dynamicity:
• insert(e) : Insert a single element e into the set.
• delete(e): Delete a single element e from the set.
Optional functionality for updates. Some data structures (e.g.,
Aspen [36] and CPAM [35]) may natively support batch updates
at the set level. That is, in addition to the parallelization over the
vertices, the data structure itselfmay support batch updates forwork
sharing and potentially additional parallelism. Therefore, BYO also
provides an interface for batch insertions/deletions as part of the
NeighborSet API:
• insert_batch(batch): Insert a batch of elements into the set.
• delete_batch(batch): Delete a batch of elements from the set.
Translating graph batch-update API into NeighborSet API.
Modern dynamic-graph systems support inserting and deleting a
batch (i.e., a set) of edges rather than one at a time. Different data
structures require different input forms for efficient batch updates to
beapplied.BYOsupports threedifferent forms for batches.Thefirst is
to simply globally sort the batch. This is good for data structures that
perform global merges. The second is to semi sort [39, 44, 80], which
groups equal keys (sources) together but does not necessarily glob-
ally order the keys across the whole list, to partition the batch into
edges destined for different vertices the batch by source. Just semi
sorting is sufficient for data structures that use the NeighborSet API,
but do not derive any benefit from sorting such as hash tables. The
third is to first semi sort by source, and then group and integer sort
each individual set of edges. This is good for ordered set containers.
Advantages of the NeighborSet API. The NeighborSet API is
designed tomake it as easy as possible for a data-structure developer
to integrate their container with BYO, as long as they implement
the basic contract specified in the STL container API. Notably, if
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a developer wants to integrate a set library that implements size
and iterator functionality with BYO, they do not need to write any
additional code. To improve ease of use, we implemented BYO to
automatically translate from the STL container API to the BYO API.
That is, integrating a data structure that implements the STL con-
tainer API just requires importing it at the top of the test driver and
specifying its type as the graph container under test.

Furthermore, we incorporate the inline optimization from Ter-
race [67] into thevertex set inBYOtobenefit arbitrarydata structures
and enable faster systems overall. This optimization stores a few
(about 10) edges inline in the vertex level next to the pointer to the
neighbor set for each vertex. The goal is to avoid indirections for low-
degree vertices. The idea was originally introduced in Terrace but
can be generally applied to any graph container with the sequence
of sets structure. Figure 5 illustrates the inline optimization in an
arbitrary sequence of sets graph representation. On average, we find
that the inline optimization speeds up set containers by 1.06× on
average, which we will detail in Section 6.

Another benefit of the NeighborSet API is flexibility in the choice
of outer set data structure with a fixed inner set type. For exam-
ple, BYO can store directed graphs with two dense outer vectors
(one for incoming and one for outgoing neighbors). Similarly, BYO
could store the outer set sparsely for a static or dynamic form of
Doubly-Compressed Sparse Rows (DCSR) [21].

4.2 GraphContainer API
Next, we introduce theGraphContainer API to connect BYO to graph
data structures that do not represent the neighbor sets as separate
independent data structures. For example, the classical Compressed
Sparse Row (CSR) [78] representation stores all of the neighbor sets
contiguously in one array. Furthermore, some optimized dynamic-
graph containers like Terrace [67] and SSTGraph [82] collocate some
neighbor sets for locality. These graph data structures internally
manage both the vertex and neighbor sets.

Wefind that theminimalAPI necessary for a data structure to sup-
port a diverse set of graph algorithmsviaBYO is justmap_neighbors
and num_vertices.

Required functionality for algorithms.
• map_neighbors(i, f): Apply the function f to all neighbors of

vertex i.
• num_vertices(): Return the number of vertices in the graph.

Optional functionality for algorithms.
• num_edges(): Return the number of edges in the graph.
• degree(i) : Return the degree of vertex i.
• map_neighbors_early_exit(i, f): Apply the function f to the

neighbors of vertex i until f returns true.
• parallel_map_neighbors(i, f): Apply the function f in par-

allel to all neighbors of vertex i.
• parallel_map_neighbors_early_exit(i, f): Apply the func-

tion f in parallel to the neighbors of vertex i until f returns true.
Because the iterations are running in parallel, some threads may
continue even after one returns true.
Many of these functions such as num_vertices, num_edges, and

degreeare commonlyexpected fromanygraphcontainer as away to
query the graph structure. The map_neighbors functionality is also

Table 1: GBBS primitives implemented using just themap primitive.
GBBS Vertex
Operator B.Y.O. Lambda

Map Pass through provided function
Reduce auto value = identity

map([&](auto ...args) { value.combine(f(args...)) })
Count int cnt = 0

map([&](auto ...args) { cnt += f(args...) })
Degree int cnt = 0

map([&](auto ...args) { cnt += 1) })
getNeighbors Set ngh = {}

map([&](auto ...args) { ngh.add(args) })
Filter Set ngh = {}

map([&](auto ...args) { if (pred(args) ngh.add(args) })

commonly implemented in graph containers to support graph algo-
rithms. The optimized variants ofmap (early exit and parallel) can be
more difficult to implement than serial map. They have been studied
in the literature [15, 36, 74] and have been reported to help on some
algorithms and graphs. We perform a comprehensive study of the
performance benefits of the individual API components in Section 6.
Required functionality for updates. The GraphContainer API
directly translates the batch-update API at the BYO level to the un-
derlying container. Since the batch given to BYOmay not be sorted,
BYO sorts it because many batch-update algorithms require sorted
batches [35, 36, 67, 82, 83]. Data structures using theGraphContainer
API in BYOmust implement the following functions:
• insert_sorted_batch(batch): Insert a sorted batch of edges

into the graph.
• delete_sorted_batch(batch): Delete a sorted batch of edges

from the graph.
Advantages of the GraphContainer API. The GraphContainer
API enables cross-set optimizations that cannot be expressed in the
NeighborSet API at the cost of programming effort. For example, in
the classical CSR, the edges are stored contiguously in one array for
locality rather than in separate per-vertex arrays, which is not easily
captured by the set of sets abstraction. Another example is the hierar-
chical structure in Terrace [67], which stores someneighbor sets con-
tiguously in a dynamic array-like data structure. Additionally, SST-
Graph [82] shares somemetadatabetween thedifferentneighbor sets
for space savings, which cannot be captured with the independent
sets abstraction. However, the GraphContainer API cannot access
the general inline optimization supported by the NeighborSet API.

4.3 Maintaining graphmetadata in BYO
Furthermore, BYO reduces the burden on the programmer by inter-
nally maintaining information about graph structure at the frame-
work level when it is not done at the container level. Specifically, it
stores the the degree of each vertex in the vertex set as well as the
total number of edges if needed. If a set container does not imple-
ment size or a graph container does not implement degree and/or
num_edges, BYO defaults to its internal metadata.

4.4 Connecting BYO to GBBS
BYO simplifies the list of original read-only GBBS neighborhood
operators such as map, reduce, count, etc. by implementing several
of themwith map. The original GBBS specification required the data-
structure developer to implement several neighborhood operators.
In contrast, BYO requires them to implement only one. Table 1
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demonstrates how to implement the original GBBS neighborhood
operators using different map lambdas.

In addition to providing the translation layer from the GBBS
vertex neighborhood operators, we also needed to modify the im-
plementation of some vertexSubset operators in GBBS because they
assume that the underlying graph is stored in CSR format. This is not
inherent in the high-level GBBS specification, but was a prevalent
assumption in the codebase. Specifically, several EdgeMap functions
assumed that they could directly perform array access into the con-
tainer to access relevant parts of the graph, which does not hold for
arbitrary data structures.
VertexSubset optimizations in BYO.We also include several op-
timizations to the higher-level vertexSubset abstraction in BYO that
can benefit all systems, since they are independent of the container.
Specifically, we converted the boolean array that the vertexSubset
uses in dense mode to a bitarray, which has been shown in prior
work [82] to improve overall algorithm performance by about 1.05×.
We confirm these results with our own experiments and find that on
average, BYOwith a boolean array is 1.04× slower than BYOwith
a bit array. We also removed some unnecessary work (e.g., copies
and sorts) at the vertexSubset level.
GBBS algorithms supported in BYO. In addition to algorithms
that only require read-only neighborhood operators (e.g., map, re-
duce, degree, etc.), BYO can also support whole-graph algorithms
that at first seem to require vertex-vertex operators such as intersec-
tion by first applying an out-of-place filter operation (see Table 1)
to convert the data structure into a more amenable format for algo-
rithms. For example, efficient implementations of triangle counting
(TC), a classical example of an algorithm based on vertex-vertex
intersections, first perform a filter to reduce the number of edges and
eliminate enumerating duplicate triangles [75]. Applying this filter-
ing optimization is the standard technique for running other whole-
graph algorithms involving vertex-vertex operations, e.g., k-truss,
butterfly counting, structural similarities, etc [24, 42, 52, 68, 71, 86].

Notably, thisfilteringoperation isnot analgorithmic changemade
in BYO. The triangle counting (TC) implementation in base GBBS
first performs a filter before intersection, even when the graph is
stored in CSR. To demonstrate BYO’s functionality, we used filter to
implement TC on top of a variety of dynamic containers. We found
that they all support TC in similar time because the only variation
is the time spent doing the filter, which is relatively inexpensive
compared to the time performing intersections on the filtered graph.

5 DATA STRUCTURES EVALUATED
This section details the many graph containers that we evaluate us-
ing BYO in this paper.We include general-purpose off-the-shelf data
structure libraries that were not designed or optimized for graph
processing as easy-to-use baselines. We also include state-of-the-art
special-purpose graph containers from the literature to demonstrate
the advantage of further development and optimization.

5.1 Off-the-shelf data structures
We evaluate off-the-shelf data structures both from the C++ standard
template library (STL) [51, 65], and fromAbseil [2], a collection of
open-source data structure implementations in C++ designed to aug-
ment the STL. These containers serve as baselines to demonstrate

howmuch performance is left on the table with simple easy-to-use
data structures. The details about the included structures are as
follows:
• std::set [6]: A standard container library that comes with any

C++ distribution. It maintains a sorted set of unique elements and
is usually implemented with a red-black tree [28].

• std::unordered_set [7]: A standard container library. The el-
ements are stored unsorted in a hash table [28].

• absl::btree_set [2]: An ordered set data structure that gener-
ally conforms to the STL container API. It is implemented as a
B-tree [14], a classical cache-friendly tree data structure.

• absl::flat_hash_set [2]: An unordered set data structure that
generally conforms to the STL container API. It is implemented
using a hash table.

• std::vector [8]: A basic array implementation that comes with
any C++ distribution. It stores elements continguously inmemory.

Integration with BYO. These general-purpose data structures are
all sets and thereforeuse theNeighborSetAPIdescribed inSection4.1.
Using the common STL container API functions of size (returns
the number of elements in the container) and iterator (enables
access to the elements in the container), the general-purpose data
structures naturally support the num_edges, degree, map, and
map_with_early_exit functionality through translation via BYO.

Since these set data structures implement the NeighborSet API,
they do not need any additional code to integrate with BYO, as de-
scribed in Section 4.1. However, vector is still implemented in full
manually to give users of the system an example of each function
being implemented and to include the parallel mapping functions
which can not be generated automatically.

5.2 Optimized data structures
We also evaluate optimized general set data structures that have
previously been used for dynamic graphs as well as special-purpose
graph containers designed specifically for graphs. These containers
demonstrate what kind of performance is achievable with tailor-
made data structures. Some of these optimized data structures have
both uncompressed and compressed versions (Section 3), which we
will denote with †. The details are as follows:
• Compressed Sparse Row† [78] (CSR): A classical static represen-

tation for graphs.
• Terrace [67]: A dynamic-graph container optimized for skewed

graphs. It uses a hierarchical structure built on arrays, a Packed
Memory Array (PMA) for graphs [84, 85], and B-trees [14] to
organize the vertices by degree.

• SSTGraph [82]: A dynamic-graph container built on a shallow
hierarchy of sorted PMAs [17, 48].

• PMA† [83]: A cache-oblivious updateable array.
• Dynamic Hashed Blocks (DHB) [79]: A dynamic-graph container

based on block-based hashing.
• Aspen† [36]: A randomized blocked tree.
• CPAM† [35]: A deterministic blocked tree.
Integrationwith BYO.We integrate CSR [78], Terrace [67], SST-
Graph [82], and DHB [79] with the GraphContainer API in BYO. All
of these data structures alreadynatively include thedegree function-
ality, andmost includenum_edges. For the systems that implemented
the Ligra interface (Terrace [67], SSTGraph [82], and PMA [83]), we
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adapted the map-based functionality from their original integration
with Ligra to integrate with BYO. In DHB [79], we used the provided
iterator to implement the map_neighbors and
map_neighbors_early_exit functionality.

Additionally, we incorporate Aspen [36] and CPAM [35] with
the NeighborSet API in BYO. These tree-based containers natively
implement size and all of the map variants. We incorporate the
PMA[83] intoboth theNeighborSet andGraphContainerAPI inBYO
since it was originally presented as a single PMA for the entire graph.

6 EXPERIMENTAL EVALUATION
We employ BYO to evaluate 27 graph containers (and variants), 10
graph algorithms, and 10 graph datasets.

We first summarize the high-level takeaways from our large-scale
evaluation. Next, we study the performance effects of the different
functionalities in the BYOAPI described in Section 4, which helps
explain the impact of missing functions in later evaluations.We then
evaluate BYO compared to other state-of-the-art graph-algorithm
frameworks to ensure that BYO’s extra generality does not come at
the cost of performance. Finally,weperformacomprehensive evalua-
tion of 27 graph data structures on a suite of 10 graph algorithms.We
also evaluate the dynamic structures on their update throughput.We
publicize the raw data for all experiments as well as the code in the
Github repo3. We evaluate all systems in an unweighted, undirected
mode to enable the widest compatibility.

6.1 Summary
First, we evaluate different configurations of the GraphContainer
API ( Section 4.2) in BYOwith CSR as the underlying graph represen-
tation to determine the importance of the different functions (e.g.,
the types of maps). On average, we find that theminimal efficient
API configuration implements the required functionality, degree,
and num_edges. This configuration is only 1.16× slower compared
to the full configuration, or the BYO configuration with all of the
(required and optional) functionality listed in Section 4.2. However,
in the worst case, the minimal efficient configuration incurs up to
3.1× slowdown over the full API. Adding the more advanced maps
(parallel map and early exit) mitigates the worst case, which is im-
portant for difficult problem instances e.g., graphs with high degree.
The full details are in Section 6.3.

Next, we evaluate BYO compared to other state-of-the-art graph-
algorithms frameworks in Section 6.4 and find that BYO is compet-
itive with GraphBLAS, Ligra, and GBBS, which are state-of-the-art
high-performance frameworks for graph algorithms. Specifically,
BYO achieves between 1.06−4.44× speedup on average compared
to other frameworks. These results indicate that BYO is a good can-
didate for integrating with various graph containers because the
resulting systems are both expressive and achieve high performance.
We also compare several of the original systems that introduced
dynamic-graph containers (e.g., PMA, CPAM) with their original
frameworks to their implementations using BYO and find that BYO’s
implementation is faster.

Finally, we perform a comprehensive study of dynamic-graph
containers on both graph algorithm and batch-insert performance
in Sections 6.5 and 6.6.
3https://github.com/wheatman/BYO

Table 2: Graph problems supported in BYO and their categories [37].
Category Problem

Shortest-path
problems

Breadth-First Search (BFS)
Single-Source Betweenness Centrality (BC)
𝑂 (𝑘 )-Spanner (Spanner)

Connectivity Low-Diameter Decomposition (LDD)
Connectivity (CC)

Substructure Approximate Densest Subgraph (ADS)
𝑘-core

Covering Graph Coloring (Coloring)
Maximal Independent Set (MIS)

Eigenvector PageRank (PR)

In terms of graph algorithm performance, our findings show that
graphdata structures arevery similar onaverage, but that developing
specialized graph data structures is worthwhile because additional
optimization effort can improve holistic performance on more chal-
lenging instances, e.g., high-degree graphs. All of the data structures
testedbesides theunoptimizedstd::setandstd::unordered_set
incur most about 1.5× slowdown compared to CSR when averaging
across all algorithms and graphs. Furthermore, the best specialized
container (CPAMwith inline) is only about 1.1× faster than the best
off-the-shelf data structure (absl::btree_setwith inline) on aver-
age.However, theworst-case slowdown for theabsl::btree_set is
2.6×, while CPAM achieved amaximum slowdown of 1.9× over CSR.
These results suggest that specialized data structures can improve
upon off-the-shelf data structures onmore difficult problem settings.

BYO cuts through combinatorial explosion in terms of program-
ming effort to enable large-scale comparisons of graph containers
on a diverse suite of algorithms to provide a complete view of how
fast a graph container can support algorithms in a variety of cases.

In terms of batch inserts, we find that off-the-shelf structures
exhibit a folklore query-update tradeoff: the Abseil B-tree, which
is best off-the-shelf structure for algorithms, experienced around
a 3× slowdown on larger batch inserts compared to the Abseil flat
hash set. However, the hash set was worse on algorithms compared
to the B-tree. However, specialized containers can overcome the
query-update tradeoff on the largest batches: the single PMA is bet-
ter on algorithms on average compared to the B-tree as well as on
the largest batch size.

6.2 Experimental setup

Algorithms evaluated. Table 2 lists the 10 graph problems that
BYOprovides parallel algorithms for based on the data-structureAPI
and GBBS abstractions. BYO does not change the algorithm imple-
mentations from GBBS (just the translation from the data structure
to the lower-level primitives). Therefore, BYO inherits the strong
theoretical boundsonalgorithmworkanddepth (and thereforeparal-
lelism) fromGBBS. These algorithms cover awide range of problems,
including shortest-path, connectivity, substructure, covering, and
eigenvector problems.We refer the interested reader to the GBBS pa-
per for full details on the algorithms and their implementations [37].

Systems setup.We ran all experiments on an Intel®Xeon®Gold
6338 CPU@ 2.00GHz dual socket machine with 64 physical cores
(128 hyperthreads) and 1024 GiB of main memory running across 16
channels at 3200MT/s. The machine has 5 MiB of L1 cache, 80 MiB
of L2 cache, and 96 MiB of L3 cache.
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Table 3: Sizes of (symmetrized) graphs used (ordered by size).
Graph Vertices Edges Avg. Degree

Road (RD) 23,947,347 57,708,624 2
LiveJournal (LJ) 4,847,571 85,702,474 18
Com-Orkut (CO) 3,072,627 234,370,166 76
rMAT (RM) 8,388,608 563,816,288 67
Erdős-Rényi (ER) 10,000,000 1,000,009,380 100
Protein (PR) 8,745,543 1,309,240,502 150
Twitter (TW) 61,578,415 2,405,026,092 39
papers100M (PA) 111,059,956 3,228,124,712 29
Friendster (FS) 124,836,180 3,612,134,270 29
Kron (KR) 134,217,728 4,223,264,644 31

To validate the choice of the BYO API, and show that it achieves
similar end-to-end running times as existing systems, we first com-
pare BYO with Ligra, GBBS, GraphBLAS, and GAP on the 4 algo-
rithms common to all of the systems: BFS, BC, CC, and PR (Table 2).
Ligra/GBBS/GraphBLAS are state-of-the-art graph-algorithm frame-
works, while GAP is a suite of direct algorithm implementations.

We compiled all codes besides Ligra [73]with g++ 11.4.0. Graph-
BLAS and GAP [16] are parallelized natively with OpenMP [29].
Since Ligra [73] was designed and testedwith Cilk [20] but Cilk is no
longer supported in g++, we compiled Ligra using clang++ 14.0.6
with OpenCilk 2.0 [69], the modern iteration of Cilk. We ran GBBS
with its default custom parallelization framework and scheduler.
BYO uses the same custom parallel scheduler since it uses GBBS as
a starting point for its implementation.

To test the GraphBLAS programming framework [22, 30, 31, 53],
we include LAGraph [5, 61], a collection of algorithms implemented
using GraphBLAS.

We kept the number of trials unchanged from each system’s dis-
tribution and took the average over all trials. By default, Ligra/GBB-
S/BYOperform 3 trials (with one extrawarmup trial) per experiment,
GAP performs 16, and GraphBLAS performs 64.

Furthermore, we evaluate the systems resulting from integrating
BYO with existing containers compared to their original systems.
Specifically, we ran PMA, SSTGraph and CPAMwith their original
driver code, compiledwith g++-11,which use their own implementa-
tion of the Ligra API to run algorithms. The original systems use the
same parallelization framework as BYO.We ran the PMA variants
and SSTGraph on BFS, BC, PR, and CC, and CPAM on BFS and BC
because those were the algorithm implementations provided in the
original codebases that intersected with the ones provided via BYO.
The algorithm implementations vary slightly between BYO and the
existing systems, but the high-level abstractions are the same.

We ran all graph containers in unweighted mode (and by exten-
sion, all algorithms) for simplicity.

Datasets. Table 3 lists the 10 graphs used in the evaluation and their
sizes. All of the graphs included in the evaluation are undirected and
unweighted for simplicity.We startedwith a selection of graphs from
theGAPbenchmark suite [16], awidely-used graph-evaluation spec-
ification. These include the the Road (RD) [1] network, the Twitter
(TW) [16] graph, and the Kron graph [56] with the same parameters
as Graph 500 (A=0.57, B=C=0.19, D=0.05) [4]. Much like in GAP,
we include a uniform random graph Erdős-Rényi (ER) graph [41]
generated with 𝑛=107 and 𝑝 =5·10−6. We also generated an rMAT
(RM) graph by sampling edges from an rMAT generator [23] with
𝑎 = 0.5;𝑏 =𝑐 = 0.1;𝑑 = 0.3 to match the distribution commonly used
in evaluating graph containers [35, 36, 67, 83]. Additionally, we in-
clude several other social network graphs: the LiveJournal (LJ) [13],

Table 4: The average performance of different GraphContainer API
configurations with CSR as the underlying container. “Min” refers
BYO with just the required functionality and “Full” refers to BYO
with both required and optional functions described in Section 4.2.
The remaining configurations are described with either what they
add tomin, or what they remove from full. The 95% andmax columns
show the 95th percentile andmaximum slowdown over the full API
across all algorithms and all graphs.

API configuration Slowdown over full API
Average 95% Max

Min (just map_neighbors and num_vertices) 10.69 231 1379
Min + degree 1.43 4.1 22.8
Min efficient (Min + degree + num_edges) 1.16 2.5 3.1
Full minus num_edges 1.31 2.78 22.9
Full minus degree 2.18 7.4 14.5
No early exit (Full minus both map early exit) 1.12 2.5 3.1
No parallel map (Full minus both parallel map) 1.01 1.3 1.9
Full minus parallel_map_neighbors_early_exit 0.98 1.03 1.1
Full (All required and optional functionality) 1.00 1.00 1.00

Community Orkut (CO) [87], and Friendster (FS) graphs from the
SNAP dataset [57]. For coverage from other application domains, we
include the papers100M (PA) dataset from the Open Graph Bench-
mark [45]. Finally, we also use the Protein (PR) network graph, an
induced subgraphavailable in thedata repositoryof theHipMCL[12]
algorithm. Unlike social network graphs, the protein network graph
is not heavily skewed in terms of degree distribution. These inputs
represent a wide range of inputs both in skewness and in size.

6.3 APIMicrobenchmarks
Westart by performing a study to understandwhat are the important
ways in which the graph processing system needs to interact with
the underlying graph. We perform a set of experiments where we
keep the graph data structure consistent (CSR) and only vary theAPI
we use to run the algorithms. Table 4 reports the average slowdown
relative to the full API (all functions implemented) of the different
API configurations (missing some functions).

Theminimal efficient API configurationwith onlynum_edges and
degreeon topof the required functionality (mapandnum_vertices),
BYO incurs 1.16× slowdown on average compared to the full API
with all map variants. Furthermore, In terms of algorithms, the min-
imal efficient API incurs over 1.2× slowdown (on average across
graphs) onBFS, Spanner, and LDD,which can be explained due to the
lack of early exit, as these algorithms can all benefit from direction-
optimization and early termination during edgeMap [15]. These
results suggest that a data-structure developer that implements only
a few basic functions such as num_edges and degree can achieve
close to the best-possible performance from BYO on a majority of
cases. The num_edges and degree functions are necessary for per-
formance because they are used frequently in the edgeMap/vertex-
Subset graph-algorithm abstraction from Ligra/GBBS to determine
the cutoff between sparse and dense mode for the vertexSubset [73].

Furthermore,Table4 shows that implementing themoreadvanced
mapsdoesnot significantlyhelp: onaverage, omittingmapwithearly
exit incurs 1.12× slowdown and omitting parallel map incurs only
1.01× slowdown. However, there are specific algorithms and graphs
onwhich theseadvancedmapsarecritical forperformance. Forexam-
ple, in theworst case (LDDonKR), omittingearly exitmay incurup to
3× slowdown compared to the full API. Omitting early exit does not
significantly affect performance inmost cases: 65 cases incurred neg-
ligible (less than 1.03×) slowdown, 27 cases incurredmore than 1.1×
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slowdown, and 7 cases incurredmore 2× slowdown compared to the
full API. On the other hand, we found that the worst case (𝑘-core on
TW) for omitting parallelmaps resulted in 1.8× slowdown compared
to the full API; parallel map is especially important in high-degree
graphs such as TW.However, the overall effect on performance from
omitting parallel map was even less than from omitting early exit:
without parallel maps, 84 cases incurred negligible (less than 1.03×)
slowdown, 9 cases incurred more than 1.1× slowdown, and 0 cases
incurred more than 2× slowdown compared to the full API.

Based on these results, we use all available API functionality
besides parallel_map_early_exit in Sections 6.4 and 6.5.

6.4 Comparison with other frameworks
The goal of this section is to demonstrate that BYO is a good basis
for our large-scale graph container evaluation by comparing it to
several other graph frameworks, including some frameworks that
introduced graph containers which we study in our benchmark. Our
objective in this section is to show that graph containers that run al-
gorithmswith BYO do not lose out on performance compared to run-
ningwith other frameworks.Manyof the comparisons in this section
are not apples-to-apples due to minor variations in algorithm imple-
mentations. However, it does show that BYO is competitive with ex-
istingwork for end-to-end performance, and grounds the results and
lessonswe obtain throughBYO in a high-performance starting point.

Figure 6 shows that BYO achieves competitive performance over-
all when compared with direct algorithm implementations from
the GAP benchmark suite [16] as well as other high-performance
frameworks including Ligra, GraphBLAS, and GBBS.

On average, GAP supports algorithms about 1.6× faster than BYO,
but the majority of the performance gap comes from Connectivity
(CC) because the two systems implement very different algorithms
for the problem. GAP implements theAfforest algorithm [77], which
is based on an idea similar to direction-optimization that enables the
algorithm to potentially examine far fewer than all𝑚 edges. On the
other hand, the GBBS algorithmwe use is a concurrent version of
union-findwhich examines every edge, and is the state-of-the-art for
incremental connected components. For the problems that GAP and
BYO implement the same algorithms for, the average performance
gap narrows: GAP achieves about 1.15× speedup over BYO if we
exclude CC from consideration. These results demonstrate that the
cost of abstraction in BYO is relatively small when compared to the
direct implementations from GAP.

The focus of this paper is on frameworks because they enable
graph containers to easily express a diverse set of algorithms. Direct
implementations are infeasible for large-scale evaluations because
every algorithmmust be integrated with every data structure, com-
binatorially increasing the amount of programming effort needed
with every new data structure and algorithm.

In terms of frameworks, BYO achieves very similar performance
(within about 1.05×) compared to GBBS, the starting point for BYO’s
implementation. Out of the frameworks we evaluated, Ligra/GBBS
use similar abstractions based on vertexSubset/edgeMap [73]. GBBS
builds upon Ligra with additional optimizations and functionality
(e.g., bucketing [34]). BYO inherits these advancements from GBBS,
and both GBBS/BYO achieve on average 1.7× speedup over Ligra.
Finally,wealsoevaluateGraphBLAS[22, 30, 31, 53], a state-of-the-art
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Figure 6: Relative performance normalized to BYO (up is good). A
bar above 1 means there was speedup over BYO. Unlike the rest of
this paper, this is not an apples-to-apples comparison because each
system implements different algorithms and has been tuned for
different graphs. This shows thatBYO is competitivewith the existing
landscape of work, while still enabling flexibility in both container
and algorithm choice. All systems besides GAP are frameworks,
while GAP is a library of direct algorithm implementations. All
systems use CSR as the graph representation.

graph-algorithm framework based on sparse linear algebra, and find
that BYO achieves about 4× speedup over GraphBLAS. Our findings
about GraphBLAS are consistent with a recent comparison of GAP
and GraphBLAS [31] that shows that GraphBLAS is slower than
GAP because it cannot access optimizations such as kernel fusion.
Comparing to the original systems. Furthermore, we verified
that containers that run algorithms using BYO do not give up per-
formance compared to their performance in the original systems
(with different frameworks for algorithms). Specifically, when aver-
aging across algorithms and graphs, BYOwas between 1.1×−1.8×
faster than theoriginal frameworkswhen integratedwithPMA(both
uncompressed and compressed), SSTGraph, and CPAM.

6.5 Comprehensive container evaluation
At a high level, the tested graph data structures are very similar
on average, but specialized data structures have an advantage over
off-the-shelf structures in terms of worst-case performance across
problem instances. Table 5 reports the average, 95th percentile, and
maximum slowdown over CSR for each data structure across all 100
problem settings (10 algorithms × 10 graphs).

Onaverage,wefind that theoverall differencebetween thebestoff-
the-shelf dynamic structure and the best specialized dynamic struc-
ture iswithin about 1.1×. Specifically, theAbseil [2] B-tree combined
with the inline optimization described in Section 4 incurs 1.22× slow-
down compared to CSR. Furthermore, we find that the best special-
izedgraphdata structureonaverage is avectorofuncompressedPaC-
trees [35] + inline, which incurred 1.11× slowdown relative to CSR.

The average differences between specialized structures are much
smaller than previously reported in other papers because BYO stan-
dardizes the evaluation and makes optimizations previously avail-
able in one system accessible to all data structures. Specifically, we
find that the specialized containers (PaC-trees, Terrace, DHB, CPMA,
SSTGraph and Aspen) incur between 1.11−1.44× slowdown on av-
erage relative to CSR.

These results do not invalidate previous evaluations because this
paper compares containers directly rather than overall systems. Pre-
viously, papers that introduced containerswere only able to compare
their systems (both the container and framework) because of the lack
of a unified easy-to-use framework. Therefore, previously-reported
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Table 5: Data structure algorithm performance and space usage. Each
container’s time is normalized to CSR’s time averaged over all 100
settings of 10 algorithms × 10 graphs. A number closer to 1 means
better performance (higher is worse). The 95% and max columns
show the 95th percentile andmaximum slowdown over CSR across
all algorithms and all graphs. We also show the space usage of the
different graph data structures in terms of bytes per edge.

Container Slowdown over CSR Bytes per edge
Average 95% Max Min Average Max

NeighborSet API (Vector of...)

absl::btree_set 1.26 1.9 2.3
absl::btree_set (inline) 1.22 2 2.6
absl::flat_hash_set 1.40 2.3 3.4
absl::flat_hash_set (inline) 1.29 2.1 2.6
std::set 2.59 5.0 5.8
std::set (inline) 2.37 4.9 5.6
std::unordered_set 2.01 3.7 6.0
std::unordered_set (inline) 1.90 3.5 5.9
Aspen 1.22 2 2.5 5.7 12.0 53.4
Aspen (inline) 1.14 1.7 2.0 5.8 7.4 14.9
Compressed Aspen 1.44 2.1 2.6 3.4 5.0 12.1
Compressed Aspen (inline) 1.34 1.9 2.6 3.4 5.5 14.9
CPAM 1.16 1.4 1.5 4.1 4.9 9.0
CPAM (inline) 1.11 1.5 1.6 4.1 6.6 21.6
Compressed CPAM 1.37 1.7 1.9 3.4 4.5 8.9
Compressed CPAM (inline) 1.30 1.8 2.1 3.5 6.2 21.6
PMA 1.25 1.9 3.2 8.1 13.9 46.5
Compressed PMA 1.35 1.9 3.3 4.9 11.2 46.5
Tinyset 1.27 1.9 5.1 5.5 8.6 26.5
Vector 1.07 1.4 1.9 4.1 5.0 10.2

GraphContainer API

CSR 1.00 1.0 1.0 4.1 5.1 10.6
Compressed CSR 1.23 1.5 1.6 2.3 3.8 10.6
DHB 1.15 1.7 2.4
PMA 1.15 1.4 1.6 10.0 12.3 24.2
Compressed PMA 1.31 2.0 2.2 3.1 5.6 17.7
SSTGraph 1.25 1.5 2.4 4.0 6.4 19.9
Terrace 1.20 2.0 3.3 9.3 17.7 47.8

performance differences were the result of variations in the frame-
work as well as the container. Additionally some existing work is
designed for specific types of graphs or algorithms and thus tested
on situations that they are expected to performwell.

Although the off-the-shelf and specialized data structures achieve
similar performance on average, the specialized data structures have
better overall performance when looking at the holistic set of exper-
iments. Figure 2 shows for howmany experiment settings a given
data structure achieved within some slowdown relative to CSR. For
example,Abseil’sB-treewith the inlineoptimizationachievedwithin
1.25×ofCSR’s performance on 63 experiments,while PaC-treeswith
the inline optimization achieved within 1.25× of CSR’s performance
on 83 experiments. In the worst case, Abseil’s B-tree is 2.6× slower
than CSR on the 𝑘-core algorithm on the KR graph due to a lack of
parallel maps. In contrast, the vector of PaC-trees with the inline
optimization, which is carefully designed to be space-efficient and
cache-friendly and can leverage parallel maps, incurred only 1.16×
slowdown for the same problem and graph. These results suggest
that specialized data structures can mitigate performance variations
on challenging instances such as high-degree graphs.

Space usage. We also measure the space usage of all containers
which support getting their memory usage in Table 5. We find the
bytes per edge varies significantly between graphs even when the
container is fixed - by at least 2× and sometimes up to 10×. In all
cases, the worst-case bytes per edge is on the road graph due to its
low degree. Finally, compressed data structures can reduce the space
usage by 2× compared their uncompressed counterparts.

Guidance for choosing graph containers
We first analyze how different specialized graph containers per-

form on different problem settings. Next, we compare the perfor-
mance of different container configurations on the whole. Specifi-
cally, we analyze the effect of compression, the inline optimization
(via the NeighborSet API) and the effect of collocated data (via the
GraphContainer API).

Relationshipbetweencontainers andproblemsettings.Table 6
shows the fastest container for each combination of graph and al-
gorithm tested. These results provide guidance for choosing among
containers for different graph and algorithm types.

Overall, we find that the optimized tree-based containers (CPAM
and Aspen) achieve the best performance most frequently on dif-
ferent problem settings. CPAM performs especially well on the ER
graph - it is the fastest on 7/10 algorithms. We conjecture that its
performance is due to the uniform degree distribution and relatively
high average degree in ER.

Several other containers exhibit strengths in specific algorithm
or graph categories:
• The PMA is the fastest container on the Coloring algorithm for

all graphs. Coloring is a covering-type algorithm that requires
iterating over the entire graph in any order, which the PMA is
well-suited due to being optimized for contiguousmemory access.

• DHB achieves the best performance more often on large graphs
(i.e., on PA, FS, and KR). We conjecture that DHB is well-suited
to large graphs because it uses custommemory allocations that
enable it to store more data contiguously.

• Terrace has the best performance on some algorithms (ADS, MIS,
and PR) when run on the RMAT graph. Terrace is optimized for
skewed graphs, and RMAT is a synthetic skewed graph.

• On very sparse graphs, e.g., RD, data structures with fewer point-
ers and co-located memory such as PMA, CPMA, and SSTGraph
are the best choice due to the improved locality of these data
structures when the average degree of the graph is extremely low.
To summarize, CPAM and Aspen are solid choices for overall

performance but other systems are better for specific cases.
Next, we compare classes of data structures and the optimizations

possible through the different APIs in BYO.

Effect of compression on containers.These results demonstrate
that compression does not help performance on the tested data
structures and graphs. Specifically, the compressed versions of CSR,
Aspen, PaC-trees, and PMA incurred between 1.1−1.23× additional
slowdown over CSR compared to the uncompressed versions.

These results stand in contrast to previous work that demon-
strated speedups due to compression [35–37, 74, 83]. Although the
algorithmsare stillmemorybound, thecomputationaloverhead from
decompression impacts performance in algorithms in BYO because
margins for optimization and overall improvement are smaller, so
any additional work has a more pronounced effect on performance.

We focus our evaluation in this paper on graphswith up to billions
of edges to match commonly-used dataset sizes specified by graph
benchmark suites such as GAP [16] and LDBC Graphalytics [46].
However, compression is important for feasibility as well as perfor-
mance as graphs scale even larger to hundreds of billions of edges.
Without compression, these graphs cannot fit in memory.
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Table 6: The fastest container for every graph × algorithm combination. * next to a container denotes the NeighborSet API version with the
inline optimization. C-CPAM refers to the compressed version of CPAM. PMA(V) refers to the vector of PMAs using the NeighborSet API, and
PMA refers to the single PMA using the GraphContainer API.

RD LJ CO RM ER PR TW PA FS KR
BFS CPMA CPAM* Aspen* CPAM* CPAM* TinySet CPAM* Aspen* CPAM CPMA
BC absl::FHS* CPAM* Aspen* CPAM* CPAM* DHB Aspen* Aspen* Aspen* CPAM*
Spanner PMA CPAM* CPAM* Aspen* CPAM* Aspen* DHB Aspen* DHB DHB
LDD PMA CPAM* CPMA CPAM* CPAM* DHB CPMA CPAM* CPMA CPMA
CC absl::FHS* Aspen* Aspen Aspen Aspen Aspen Aspen DHB DHB DHB
ADS SSTGraph TinySet SSTGraph Terrace CPAM absl::btree PMA DHB DHB DHB
KCore C-CPAM* C-CPAM* CPAM SSTGraph SSTGraph TinySet CPAM CPAM* CPAM* Aspen*
Coloring PMA PMA PMA PMA PMA PMA PMA PMA PMA PMA(V)
MIS PMA CPAM* TinySet Terrace CPAM TinySet Aspen* CPAM* Aspen* Aspen*
PR DHB Aspen* Aspen Terrace CPAM* Aspen Aspen* TinySet PMA (V) DHB

Effects of inline optimization in NeighborSet API. Table 5
demonstrates that the inline optimization improves performance of
set data structures on average by 1.06× (between 1.03−1.09× aver-
agedacrossbothgraphsandalgorithms).The inlineoptimizationwas
introduced in theTerrace [67] graph systemas part of its hierarchical
data structure design. However, we incorporate this optimization
into the NeighborSet API in BYO to benefit all data structures.
AdvantagesofGraphContainerAPI.Finally,wefind that collocat-
ing data between sets (enabled by theGraphContainerAPI described
in Section 4.2) improves performance by between 1.02−1.1× because
it reduces indirections betweenneighbor lists. For example, as shown
in Table 5, the vector of vectors (theNeighborSet API version of CSR)
incurs 1.07× slowdown over CSR. Similarly, the single PMA is faster
on average compared to the vector of PMAs (one per vertex), and
SSTGraph is faster on average compared to the vector of tinyset (the
NeighborSet API version of SSTGraph). These results demonstrate
that collocating the data improves performance on a diverse set of
algorithms and graphs.

6.6 Batch-insert evaluation
Wemeasurebatch-insert throughput, an important featureofdynamic-
graph containers, and report the results in Figure 3.
Setup. To evaluate update throughput, we first insert all edges from
the TWgraph into the system under test.We then insert a new batch
of directed edges (with potential duplicates) to the existing graph
in the system under test and then delete that batch of edges from the
graph.We repeat this procedure 3 times per batch. To generate edges
for inserts/deletes, we sample directed edges from an RMAT gener-
ator [23] (with 𝑎 = 0.5;𝑏 =𝑐 = 0.1;𝑑 = 0.3, matching the distribution
from prior work on dynamic-graph systems [35, 67, 83]).
Discussion. The off-the-shelf data structures exhibit the classical
tradeoff between algorithm and update performance. The fastest
off-the-shelf container for inserts is Abseil’s flat hash set, which
achieved between 3× speedup over Abseil’s B-tree on inserts for
large batches. On the other hand, Abseil’s flat hash set incurredmore
slowdown on algorithms over CSR compared to Abseil’s B-tree, as
shown in Figure 2 and Table 5. We plot the set container variants
with the inline optimization because we found they did not impact
the insertion throughput greatly.

Specialized structures can overcome the algorithm-update trade-
off on the largest batches with special support for batch inserts. For
example, the batch-parallel PMA (using the GraphContainer API)
achieved 2−5× speedup over the Abseil B-tree on the larger batches
due to the PMA’s native support for parallel batch inserts. Further-
more, we found that DHB, a hash-based data structure that uses the

GraphContainer API, achieves 1−3× speedup over the B-tree on
the batch insertions. Both the PMA and DHB achieve better overall
performance on algorithms compared to the B-tree (Table 5).

Other specialized structuresmay tradeupdate speed for algorithm
performance compared to the B-tree. For example, CPAM (with in-
line) incurred 1.15× slowdown compared to the B-tree (with inline)
on batch inserts when averaging across batch sizes. Furthermore, we
found that Terrace was about 10× slower than the B-tree for batch
inserts on average across batches because Terrace maintains many
edges in a concurrent contiguous PMAand therefore cannot trivially
parallelize across vertices.

These results suggest there is potential in developing specialized
batch-parallel data structures that overcome the tradeoff for batch
inserts without giving up on algorithm performance. The results
also show the importance of how the data needs to be processed
before it can actually be inserted into the data structures. The fastest
approaches for large batches are those that only require a semi-sort.
The fastest for mid sized batches and second fastest for large batches
require a full sort, but that performmerges for the data.

7 CONCLUSION
This paper introduces BYO, an easy-to-use, high-performance, and
expressivegraph-algorithmframework.BYOenablesapples-to-apples
comparisons between dynamic-graph containers by decoupling the
graph containers from algorithm implementations. The BYO inter-
face is simple, enabling comprehensive comparisons of new contain-
ers on a diverse set of applicationswithminimal programming effort.

We have conducted a large-scale evaluation of 27 graph contain-
ers using BYO to express algorithms. The results demonstrate that
the differences between graph containers are smaller than what is
commonly reported in papers introducing newgraph containers.We
attribute this discrepancy to the fact that these papers often perform
end-to-end comparisons between graph systems, which vary both
the framework and the container.Moreover, our results demonstrate
that while on average off-the-shelf data structures achieve highly
competitive performancewith specialized data structures, they leave
significant performance on the table for certain algorithms/graphs.

We believe that BYOwill spark exploration into specialized data
structures for specific cases where off-the-shelf data structures do
not do well, as well as on data structures that support fast updates
without giving up on algorithm performance.
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