
Brief Announcement: PASGAL: Parallel And Scalable
Graph Algorithm Library

Xiaojun Dong
UC Riverside

xdong038@ucr.edu

Yan Gu
UC Riverside

ygu@cs.ucr.edu

Yihan Sun
UC Riverside

yihans@cs.ucr.edu

Letong Wang
UC Riverside

lwang323@ucr.edu

ABSTRACT
We introduce PASGAL (Parallel And Scalable Graph Algorithm
Library), a parallel graph library that scales to a variety of graph
types, many processors, and large graphs. One special focus of PAS-
GAL is the efficiency on large-diameter graphs, which is a common
challenge for many existing parallel graph processing systems due
to the high overhead in synchronizing threads when traversing the
graph in the breadth-first order.

The core idea in PASGAL is a technique called vertical granularity
control (VGC) to hide synchronization overhead by careful algo-
rithm redesign and new data structures. We compare PASGAL with
existing parallel implementations on several fundamental graph
problems. PASGAL is always competitive on small-diameter graphs,
and is significantly faster on large-diameter graphs.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; Par-
allel algorithms; Shared memory algorithms.

KEYWORDS
Parallel Algorithms, Graph Algorithms, Graph Processing

ACM Reference Format:
Xiaojun Dong, Yan Gu, Yihan Sun, and Letong Wang. 2024. Brief Announce-
ment: PASGAL: Parallel And Scalable Graph Algorithm Library. In Proceed-
ings of the 36th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3626183.3660258

1 INTRODUCTION
Processing and analyzing large-scale graphs in parallel have become
increasingly important. The increasing number of cores and mem-
ory size allows a single machine to easily process graphs with bil-
lions of vertices in a few seconds, even for reasonably complicated
tasks. As a result, a huge number of in-memory graph processing
algorithms and systems have been developed (e.g. [2, 4]).

Despite the hardware advances, the increasing number of cores
does not provide “free” performance improvement. We observed
that many existing parallel systems suffer from scalability issues,
even in fundamental tasks such as breadth-first search (BFS), strongly
connected components (SCC), biconnected components (BCC), and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06.
https://doi.org/10.1145/3626183.3660258

single-source shortest paths (SSSP). In Fig. 1, we compare the run-
ning time of some existing parallel implementations over a sequen-
tial one for each problem. Tested on a 96-core machine, existing
parallel implementations can perform worse than a sequential one,
especially on large-diameter graphs.

One major reason for such performance degeneration is the high
overhead of managing and synchronizing threads. While enabling
the potential of better parallelism, more cores also bring up great
challenges and overhead. This is more pronounced when using BFS-
like primitives on large-diameter graphs: when traversing the graph
in BFS order, the number of rounds (and thus the cost of synchro-
nizing threads between them) is proportional to the diameter of the
graph. As a result, when the diameter is large, the synchronization
overhead can be more expensive than the computation.

We propose an open-source library PASGAL: the Parallel And
Scalable Graph Algorithm Library, that implements various
graph algorithms scalable to diverse graph types, many processors,
and large graphs. PASGAL includes several problemswhere existing
parallel solutions suffer from high synchronization costs, such as
BFS, SCC, BCC, and SSSP. We plan to include more in the future.

To overcome the scalability issues, the key technique in PASGAL
is called vertical granularity control (VGC) proposed in our recent
paper [13] to hide scheduling overhead. Accordingly, we need to
redesign algorithms and data structures to facilitate VGC, as well
as to synergistically optimize work, span and/or space usage. In
Sec. 2, we introduce our techniques in more details.

With VGC and other techniques, PASGAL achieves high per-
formance on a variety of graphs, especially large-diameter graphs.
We present some experimental results in Fig. 1. Compared to the
baselines, PASGAL is always competitive on small-diameter graphs,
and is almost always the fastest on large diameter graphs. Our code
is publicly available [5]. Due to space limit, we put more references
and experiments in the full version [6].
Preliminaries. Given a graph 𝐺 = (𝑉 , 𝐸), we denote 𝑛 = |𝑉 | and
𝑚 = |𝐸 |. We use 𝐷 to denote the diameter of 𝐺 .

Most algorithms in PASGAL are frontier-based. At a high level,
the algorithm maintains a frontier, which is a subset of vertices to
be explored in each round. In round 𝑖 , the algorithm processes (visits
their neighbors) the current frontier F𝑖 in parallel, and puts a subset
of their neighbors to the next frontier F𝑖+1, determined by a certain
condition. For example, in BFS, a vertex 𝑢 will add its neighbor
𝑣 to the next frontier iff. 𝑢 is the first to visit 𝑣 (based on some
linearization order if there are concurrent visits). The algorithm re-
quires𝑂 (𝐷) rounds. One key challenge of in parallel BFS or similar
approaches is the large cost to create and synchronize threads be-
tween rounds, which is especially costly for large-diameter graphs
(more rounds needed). In this paper, we will show how PASGAL
reduces the scheduling overhead to achieve better parallelism.

439

https://doi.org/10.1145/3626183.3660258
https://doi.org/10.1145/3626183.3660258
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3660258&domain=pdf&date_stamp=2024-06-17


SPAA ’24, June 17–21, 2024, Nantes, France Xiaojun Dong, Yan Gu, Yihan Sun, and Letong Wang

2 ALGORITHMS
We now introduce the algorithms in PASGAL. For page limit, we
only elaborate on SCC and briefly overview the others.
2.1 Parallel SCC
Most existing parallel SCC algorithms are based on reachability
search, which finds all vertices 𝑢 that are reachable from a given
vertex 𝑣 . Most systems implements the reachability search by a BFS
from 𝑣 . This directly implies several (interrelated) challenges on
large-diameter graphs. First, this incurs many rounds of creating
and synchronizing threads with high overhead. Second, many real-
world large-diameter graphs (e.g., road networks) are sparse with
small average degrees. As a result, every parallel task (processing
one vertex in the frontier) is small, and the cost of scheduling the
thread may dominate the actual computation. Finally, because of
sparsity, each frontier size is also likely small, which makes the
algorithm unable to utilize all available threads.
Algorithm Redesign. To resolve this challenge, PASGAL uses the
SCC algorithm in [13]. The key observation is that a reachability
search does not require a strong BFS order. Therefore, one can relax
the BFS order and visit vertices in an arbitrary order. In this way,
the algorithm employs a technique called vertical granularity
control to hide scheduling overhead, as introduced below.
Vertical Granularity Control. Granularity control (a.k.a. coars-
ening) is widely used in parallel programming, which also aims to
avoid the overhead caused by generating unnecessary parallel tasks.
For computations with sufficient parallelism, e.g., for a divide-and-
conquer algorithm of size 𝑛 ≫ 𝑃 (𝑃 is the number of processors),
a common practice is to stop recursively creating parallel tasks at
a certain subproblem size and switch to a sequential execution to
hide the scheduling overhead.

Inspired by this, the idea of VGC is also to increase each task
size to hide the scheduling overhead. For reachability searches, we
simply perform a local search to visit at least 𝜏 vertices, possibly in
multiple hops. While globally the vertices are not visited in the BFS
order, this does not affect the correctness of reachability. Note that
here 𝜏 is equivalent to the base-case task size of granularity control,
and is a tunable parameter. In this way, VGC 1) greatly reduces
the number of rounds, since each round may advance multiple
hops from the current frontier, and 2) quickly accumulates a large
frontier size since the next frontier contains multiple-hop neighbors
from the current frontier, and thus yields sufficient parallel tasks
throughout the algorithm. Both outcomes effectively reduce (or
hide) synchronization costs and enable much better parallelism.
Data Structure Design. Another useful technique for the SCC
algorithm is a data structure called hash bag [13]. It maintains a
dynamic set of vertices as the frontiers for parallel graph algorithms.
For page limit, we refer the readers to [13] for more details.

2.2 Other Algorithms
Parallel SSSP. The SSSP algorithm in PASGAL is based on the
stepping algorithm framework [7], and uses VGC and hash bags
introduced in Sec. 2.1 to accelerate the frontier traversing.
Parallel BFS. Using VGC, we implemented a new BFS algorithm in
PASGAL. We also use hash bags to maintain the frontiers. Our BFS
algorithm generates the hop distance from the source to all vertices.
For any vertex encountered in a local search from vertex 𝑣 , we add

Road Social
AF NA AS EU LJ FB OK TW FS

𝑛 33.5M 87.0M 95.7M 131M 4.85M 59.2M 3.07M 41.7M 65.6M
𝑚′ 44.8M 113M 123M 169M 69.0M N/A N/A 1.47B 3.61B
𝑚 88.9M 220M 244M 333M 85.7M 185M 234M 2.41B 3.61B
𝐷 ′ 8276 9337 16660 11814 22 N/A N/A 18 N/A
𝐷 3948 4835 8794 4410 19 22 9 22 37

𝑘-NN Web
CH5 GL5 GL10 COS5 WK SD CW HL14 HL12

𝑛 4.21M 24.9M 24.9M 321M 6.63M 89.2M 978M 1.72B 3.56B
𝑚′ 21.0M 124M 249M 1.61B 165M 2.04B 42.4B 64.4B 129B
𝑚 29.7M 157M 310M 1.96B 300M 3.88B 74.7B 124B 226B
𝐷 ′ 5683 17268 13982 1390 62 145 506 800 5279
𝐷 14479 21601 9053 1180 9 35 254 366 650

Synthetic Underline: undirected graphs
REC SREC TRCE BBL 𝑚′: #edges in directed graphs

𝑛 100M 100M 16.0M 21.2M 𝑚: #edges in undirected or
𝑚′ 297M 204M N/A N/A symmetrized graph
𝑚 400M 336M 48.0M 63.6M 𝐷 ′: diameter of the directed graph
𝐷 ′ 59075 102151 N/A N/A 𝐷 : diameter of the undirected or
𝐷 50500 54843 5527 7849 symmetrized graph
Table 1: Tested graphs. Since it is hard to obtain the exact value of 𝐷 and
𝐷 ′ , the number shown is a lower bound obtained by at least 1000 sampled
searches on each graph.

it to the corresponding frontier if its hop distance can be updated by
𝑣 . Due to local search, a vertex can be visited multiple times instead
of exactly once as in standard BFS, since the updated distance in
a local search is not necessarily the shortest distance, leading to
extra work. To reduce this overhead, one special technique for BFS
is that we maintain multiple frontiers, where frontier 𝑖 maintains
vertices with distance 2𝑖 from the current frontier. In this way, we
obtain the benefit of BFS by exploring multiple hops in one round,
and also avoid visiting too many “unready” vertices in the frontier.
Parallel Biconnectivity. Different from other problems, the ma-
jor performance gain of the BCC algorithm in PASGAL is due to
algorithm redesign to achieve stronger theoretical bounds. The per-
formance bottleneck of previous BCC algorithms either comes from
the use of BFS that requires𝑂 (𝐷) rounds of global synchronizations
(e.g., GBBS [4]), or requires𝑂 (𝑚) auxiliary space and does not scale
to large graphs (e.g., Tarjan-Vishkin [12]). PASGAL uses the FAST-
BCC algorithm in [8]. By redesigning the algorithm, FAST-BCC
avoids the use of BFS, and achieves𝑂 (𝑛+𝑚) work, polylogarithmic
span, and 𝑂 (𝑛) auxiliary space. We also use VGC and hash bags to
further improve the performance.

3 EXPERIMENTAL RESULTS
Library Design.We release the code of PASGAL [5]. PASGAL is
implemented in C++ using ParlayLib [3] for fork-join parallelism
and some parallel primitives (e.g., sorting). Four algorithms (BFS,
BCC, SCC and SSSP) are included. A readme file about compiling
and running the library is provided in the repository.
Setup. We run our experiments on a 96-core (192 hyperthreads)
machine with four Intel Xeon Gold 6252 CPUs and 1.5 TB of main
memory. We use numactl -i all in parallel experiments.

We tested on 22 graphs, including social networks, web graphs,
road networks, 𝑘-NN graphs, and synthetic graphs. All the graphs

440



Brief Announcement: PASGAL: Parallel And Scalable
Graph Algorithm Library SPAA ’24, June 17–21, 2024, Nantes, France

0.1
1
10
100
1000

LJ FB OK TW FT WK SD CW HL14 HL12 AF NA ASIA EU CH5 GL5 GL10 COS5 REC SREC TRCE BBL

PASGAL GBBS GAPBS(a) Speedup over sequential algorithm on BFS

0.1

1.0

10.0

100.0

PASGAL GBBS Tarjan-Vishkin

O
O

M

O
O

M

O
O

M

(b) Speedup over sequential algorithm on BCC

Social Networks Web graphs 𝒌-NN GraphsRoad Networks Synthetic Graphs

0.01
0.1
1
10
100
1000

PASGAL GBBS Multistep

N
/A

N
/A

N
/A

U
n
d
ir
ec
te
d

U
n
d
ir
ec
te
d

U
n
d
ir
ec
te
d

U
n
d
ir
ec
te
d

U
n
d
ir
ec
te
d

(c) Speedup over sequential algorithm on SCC
O

O
M

Baselines for BFS:
GBBS [4], GAPBS [2]
Sequential: a queue-based implementa-
tion

Baselines for BCC:
GBBS [4], Tarjan-Vishkin [12] from [8]
Sequential: Hopcroft-Tarjan [9]

Baselines for SCC:
GBBS [4], Multistep [10]
Sequential: Tarjan’s algorithm [11]

Figure 1: Speedup of parallel algorithms over the standard sequential algorithm. 𝑦-axis is in log-scale. Bars below 1.0 mean the parallel algorithm is slower
than a sequential one. Some bars are invisible because they are close to 1. “N/A”: not applicable. “OOM”: out-of-memory.

are from existing research papers and public datasets. The graph
information is given in Tab. 1.We provide the full graph information
and corresponding citations in the full paper. We call the social
and web graphs low-diameter graphs as they have diameters mostly
within a few hundred. We call the road, 𝑘-NN, and synthetic graphs
large-diameter graphs as their diameters are mostly more than a
thousand. We symmetrize directed graphs for testing BCC. SCC
does not apply to undirected graphs.

We present the performance comparison in Fig. 1. For page limit,
we only show results for SCC, BCC, and BFS. For each problem,
we compare the relative speedup of all parallel algorithms to a
sequential one. All baselines are introduced in Fig. 1.

In all the tests, PASGAL is always competitive on small-diameter
graphs: across all graphs, PASGAL is within 1.3× of the running
time compared to the fastest baseline on BCC, 2× on BFS, and
always faster than all baselines on SCC. Parallel BFS on social
networks is one of the most well-studied parallel graph algorithms,
and all parallel algorithms achieve superlinear speedup on some
social networks due to various optimizations (e.g., the direction
optimization [1]). PASGAL achieves good scalability and is 49–570×
faster than the standard sequential algorithm using 192 threads.

On large-diameter graphs, PASGAL achieves much better per-
formance than all baselines. On BCC, due to theoretical efficiency,
PASGAL consistently outperforms the sequential Hopcroft-Tarjan
algorithm. It is up to 3.45× faster than the best baseline on each
graph. On SCC and BFS, PASGAL is always faster than the se-
quential baseline except for one graph CH5, which has very large
diameter compared to its small size. Different from BCC, our SCC
and BFS algorithms do not have strong span bound. Using VGC
can only alleviate the scalability issue on large-diameter graphs,
but may still be unable to eliminate the issue on adversarial graphs
(e.g., a chain). Still, PASGAL is the fastest among all parallel imple-
mentations on most real-world large-diameter graphs. It is up to
5× faster than the best baseline on BFS, and up to 46× on SCC.

4 CONCLUSION AND FUTUREWORK
In this paper, we present PASGAL, a scalable graph library specially
optimized for large-diameter graphs. Some interesting future direc-
tions include further seeking new ideas to improve the performance
of BFS on small-diameter graphs that also work well with VGC, as

well as improving the performance for BFS and SCC on graphs with
very large diameters. We believe the techniques in PASGAL can
be extended to more problems, including 𝑘-core and other peeling
algorithms, 𝑘-connectivity, point-to-point shortest paths, etc. We
plan to add them to PASGAL in the future.
Acknowledgement This work is supported by NSF grants CCF-
2103483, CCF-2238358, CCF-2339310, and IIS-2227669, the UCR
Regents Faculty Development Awards, and the Google Research
Scholar Program.

REFERENCES
[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first

search. In International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), pages 1–10, 2012.

[2] S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite. arXiv
preprint arXiv:1508.03619, 2015.

[3] G. E. Blelloch, D. Anderson, and L. Dhulipala. Parlaylib — a toolkit for parallel
algorithms on shared-memory multicore machines. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 507–509, 2020.

[4] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. ACM Transactions on Parallel Computing
(TOPC), 8(1):1–70, 2021.

[5] X. Dong, Y. Gu, Y. Sun, and L. Wang. Pasgal: Parallel and scalable graph algorithm
library. https://github.com/ucrparlay/PASGAL, 2024.

[6] X. Dong, Y. Gu, Y. Sun, and L. Wang. Pasgal: Parallel and scalable graph algorithm
library. arXiv preprint:2404.17101, 2024.

[7] X. Dong, Y. Gu, Y. Sun, and Y. Zhang. Efficient stepping algorithms and imple-
mentations for parallel shortest paths. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 184–197, 2021.

[8] X. Dong, L. Wang, Y. Gu, and Y. Sun. Provably fast and space-efficient par-
allel biconnectivity. In ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 52–65, 2023.

[9] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipu-
lation. Commun. ACM, 16(6):372–378, 1973.

[10] G. M. Slota, S. Rajamanickam, and K. Madduri. Bfs and coloring-based parallel
algorithms for strongly connected components and related problems. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 550–
559. IEEE, 2014.

[11] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. on Computing,
1(2):146–160, 1972.

[12] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM
J. on Computing, 14(4):862–874, 1985.

[13] L. Wang, X. Dong, Y. Gu, and Y. Sun. Parallel strong connectivity based on faster
reachability. ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1(2):1–29, 2023.

441

https://github.com/ucrparlay/PASGAL

	Abstract
	1 Introduction
	2 Algorithms
	2.1 Parallel SCC
	2.2 Other Algorithms

	3 Experimental Results
	4 Conclusion and Future Work
	References



