
Draf
tChapter 2

Machine Models
with Darren Strash

In Section 1.1, we introduced machine models as a necessity to abstractly design
and analyse algorithms without reference to a particular hardware used to exe-

Internet

SSD

Disks

Main memory

L3

L2

cache

Core

Compute node

L1

SIMD

Network

More compute nodes

P
ro

c
e

s
s
o

r

Superscalar

Tape

Threads

Figure 2.1: Some aspects of computer architecture for which we would like ma-
chine models.

34

Draf
t35

cute a program. Generally speaking, we are facing a chicken-egg problem here.
We can use machine models to abstract from existing hardware. But we can also
strive to develop hardware that matches a certain model in order to simplify pro-
gramming. The first view is usually justified since computer architecture often
follows a quantitative approach [229] changing architectures to improve perfor-
mance for existing benchmark programs. When this process comes up with new
architectural features like caches or pipelines, models have to catch up to make it
possible to develop new programs with reasonably predictable performance. This
also helps in tuning existing programs.

But also the second view makes sense and can be observed in practice. For
example, shared-memory multiprocessors with approximately symmetric mem-
ory access costs (SMPs) have been very successful and kept reappearing although
complex memory hierarchies promise more peak performance; see also Section 2.5.5.

The “daily work” of an algorithm engineer faces a different question. Out
of several or many available machine models, which one makes sense for the
problem at hand? A straight-forward answer is to look at the machine one plans
to use and pick the “standard” model used for it. A closer inspection shows that the
Algorithm Engineering (AE) cycle of Chapter 1 is at work again. During design,
analysis, implementation, or experimental evaluation, we may learn that we have
to change the machine used or that we have to choose a different (perhaps more
detailed) model to explain the peculiarities of the studied software. Switching the
model may then also have a profound effect on the way we design and implement
our software.

As already discussed in Section 1.1, modeling machines faces a difficult trade-
off between simplicity and fidelity. Figure 2.1 summarizes some aspects of com-
puter architecture that one would like to model. In reality, things are even more
complicated – aspects like instruction pipelining, branch prediction, virtual mem-
ory, transactional memory, memory access contention, or further complexities of
different microarchitectures are not shown at all. To program a modern micro-
processor, one has access to thousands of pages of documentation but there is
no specification of how expensive a machine instruction is – indeed this varies
with the concrete processor model and a lot of context (cache content, state of the
execution pipeline, activities of other threads, temperature, etc.).1

1It is worth noting though that this complexity is a relatively new development. In his pio-
neering algorithmics book [276] Knuth specifies his MIX machine language where each machine
instruction takes the same amount of time. In this model, the running time of a deterministic algo-
rithm was a function that could in principle be analyzed analytically. One author’s first computer

Draf
t36 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

One way out is to work with one or several simple models that each consider
one important aspect. The result can then be used to compare how well different
algorithms take these aspects into account.

Open Problem 1 (Model-based auto tuning) The case for simplicity in machine
models is closely connected to the readability of the result of an algorithm analy-
sis. However, more complicated models can be used to produce complicated but
accurate descriptions of the complexity of an algorithm. These can then help to
derive the value of tuning parameters. While we know of several failed attempts at
that, there are also success stories (e.g. [117]). Nevertheless, the approach seems
to warrant additional research. The basic idea is to perform a detailed analysis of
one or several algorithms/implementations that estimates their execution times as
a function of parameters that describe the machine, input, and the configuration
of the algorithm (tuning parameters). If the input and machine parameters are
known (derived by measuring them or by requiring them as part of the input), one
can use these formulae to select the best algorithm together with optimal tuning
parameters. This is potentially much more powerful than traditional auto-tuning
(e.g., [21, 42]) that blindly tries many combinations of tuning parameters for a
fixed set of inputs in the hope that this finds good values that also work well for
future inputs.

In the remainder of this chapter, we describe a wide spectrum of (more or less)
simple models. In some cases, we add new variants that address limitations of the
basic models. These variants all have a ‘+’-superscript added to their basic name.
Often, we also explain complications of actual hardware going beyond these mod-
els. This can be helpful in performance tuning beyond theoretical analysis or in
understanding deviations between analysis and experiments. However, the level
of detail varies significantly. In part due to space constraint, the expertise (or lack
thereof) of the authors, or perceived relevance to AE. For example, Section 2.3
gives a lot of detail on memory hierarchies where the author (and the AE com-
munity in general) have a lot of experience. On the other hand, our account of
analog computing (Section 2.13.3) remains on a much more cursory level since it

(1983) used an INMOS 6510 processor which understood less than 100 simple machine instruc-
tions. Each instruction was documented in detail including the number of clock cycles needed
to execute it. Hence, Knuth’s approach still worked. Even in the late 1980s, processors like the
Motorola 68000 were simple enough for this approach. Then, things like caching and pipelined in-
struction execution made processors faster but also less predictable. Research in real-time systems
since then has struggled to be able to at least guarantee some upper bounds [479].

Draf
t2.1. TURING MACHINES 37

can currently be considered an exotic topic with more importance in the past but
considerable potential for the future.

There is no crystal clear delineation between abstract machine models as dis-
cussed in this chapter and performance tuning for particular architectures. How-
ever, issues discussed in this modeling section have the property that one can
describe the aspect to be optimized using a simple abstraction. For example,
branch-prediction mechanisms are quite complicated but simply striving to avoid
mispredictions is a good abstraction; see Section 2.2.5.
Chapter overview. In the following sections, we introduce concrete machine
models. Sections 2.1–2.3 discuss increasingly refined models of sequential com-
puting. Then Sections 2.4–2.7 present a large number of models for parallel com-
puting, where Section 2.4 motivates its importance and where Section 2.7 attempts
to bring some order into the “zoo” of possibilities. Section 2.8 on circuits takes
a lower-level view on computing that allows us to reason about hardware. Sec-
tions 2.9–2.11 look at aspects of computing orthogonal to the descriptions above:
processing data streams (Section 2.9) that do not fit into memory, fault tolerance
(Section 2.10), and privacy (Section 2.11)

Section 2.12 deviates from classical models of computation by outlining some
models for quantum computing which may revolutionize some areas of comput-
ing in the (near?) future. Indeed, there is no scarcity of further unconventional
models, some of which are briefly discussed in Section 2.13 (e.g., DNA, analog,
or neural computing).

While running time is the driving motivation between most of the models
above, other resources like space, I/O volume or communication cost are also
important. In particular, energy consumption is at least equally fundamental. Sec-
tion 2.14 discusses how to take these resources into account. Section 2.15 sum-
marizes the chapter with a brief look into conceivable futures.

2.1 Turing Machines

Perhaps the first abstract machine model was introduced by Alan Turing in 1936
[457] in order to characterize computability. A finite state machine operates on a
tape by reading and writing symbols from a finite alphabet and by moving the tape.
Allowing multiple tapes already gives surprisingly high flexibility in program-
ming. See Figure 2.2 for an illustration. Turing machines are used in complexity
theory and computability theory because of their great simplicity and flexibility.
They are also useful to nail down the complexity of an algorithm in terms of bit

Draf
t38 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

......

..
.

......

state

tapesmoversheads

control

Figure 2.2: Multitape Turing machines.

operations, e.g., for integer multiplication [195, 225]. Turing machines seem less
useful for designing algorithms that work well on real-world machines because
they differ from them in important aspects (no random memory access, finite al-
phabet, etc.). However, there are notable exceptions; in their book [424], Schön-
hage et al. demonstrate how multitape Turing machines can be a good model for
engineering numerical algorithms, such as dividing complex numbers or taking
square roots.

Exercise 1 Describe a Turing machine model operating on a two-dimensional
tape.

2.2 The von Neumann Model and its Variants

Most algorithm development, in particular in algorithm theory, is still done using
the von Neumann model or one of its variants as described below. It goes back to
one of the first designs for a universal digital computer [352] and it is a successful
way to formalize the basic computational cost of an algorithm. However further
aspects, such as memory hierarchies and parallelism, have to be considered later
in order to arrive at really high performance in practice. In our experience, this is
often more important than using advanced techniques in a simple model, such as
complicated bit parallel operations.

2.2.1 Random Access Machines (RAMs)

The random access machine (RAM) [429], in its modern form (the word RAM),
has a computing unit, a register file, and a freely-addressable memory consisting
of machine words.2 See Figure 2.3. All operations execute in constant time.

2There are several quite different definitions of the RAM model around. Often, RAMs are also
confused with register machines; see Section 2.2.2. In particular, note that RAMs that are only

Draf
t2.2. THE VON NEUMANN MODEL AND ITS VARIANTS 39

random access

register

memory

ALU

Figure 2.3: The RAM / von Neumann model. ALU stands for arithmetical logical
unit.

Operations consist of load and store (also using indirect addressing), arithmetic
operations on register operands, and (conditional) branches.3 The textbook [410,
Section 2.2] introduces a variant of this model in more detail – with all operations
and an explanation of how pseudocode can be compiled into RAM operations
so that we can directly do asymptotic algorithm analysis on pseudocode. The
main point here is that by ignoring constant factors throughout, we can sweep
many aspects of an actual microarchitecture under the rug. We will also assume
an operation for generating machine words consisting of random bits. In reality,
randomness is often “simulated” using pseudo-random number generators.

An important technical detail is the machine word size w. By default, it is
Θ(logn), where n is the input size. In particular, this allows a considerable amount
of word-parallelism. It may seem odd that we can do a nonconstant amount of
work in constant time. However, the alternatives are even odder. Constant-size
machine words would not even allow us to address the input. This is the rea-
son why Turing machine models are often used to discuss algorithms where bit-
parallelism is not allowed. Sections 2.2.2 and 2.2.3 discuss the effect of unlimited
word sizes.

Exercise 2 Outline how to implement the set operations ∪, ∩, ¬, and | · | for
subsets of 0..n−1 in time O(n/w).

allowed to increment or decrement, despite being universal machines, are not useful for analyzing
the complexity of algorithms.

3From a mathematical point of view, we would get a slightly simpler variant of the RAM
model by eliminating the register file. We choose to stick to it for several reasons: First, load-store
architectures represent an important development in computer architecture (also part of the RISC
versus CISC debate). In particular, access to registers is much cheaper than memory access in
practice so we already get a first hint at memory hierarchies. On the theoretical side, dropping the
memory gives us register machines as a special case.

Draf
t40 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.2.2 Register Machines

On a RAM with unlimited word size, we can escalate word parallelism to such
extremes that nondeterminism can be simulated with only polynomial-time over-
head, giving P = PSPACE [224]. Nevertheless, this variant is useful to discuss
computability in general. As a result, we no longer need memory; removing the
memory from the RAM model gives the register machine model. Registers with
“infinite” capacity are also implicit in the real RAM model discussed below.

2.2.3 The Real RAM

In computational geometry [378, 131] one also considers the real RAM model
where memory cells and registers can store real-valued numbers. Some operations
are forbidden in this model (specifically the floor operation), otherwise the model
is too powerful, similar to the register machine model. The real RAM is highly
unrealistic yet allows us to abstract away issues related to numerical precision
in order to develop the algorithmic basis of geometric algorithms. These can
then be made realistic by using software libraries that support exact predicates on
symbolic representations of real numbers [163]. For example, the real numbers
most frequently needed in computational geometry can be represented as roots
of a polynomial with rational coefficients (known as algebraic numbers). Other
than exact computation, robust geometric computation can also be done with fixed
precision, or by transformations that preserve a chosen topological property (such
as planarity) [428].

2.2.4 Pointer Machines and Other Restricted RAMs

The full generality of the RAM model makes it difficult to prove lower bounds.
Therefore, one also considers restricted variants. For example, pointer machines
[423, 218] are models where arithmetic is not possible. Instead, a finite state
machine operates on a dynamic graph. Other, more ad hoc restrictions are used
for particular families of problems. For example, for sorting and related problems,
we can consider elements that can only be moved, copied, and compared with a
≤ operation but not otherwise manipulated or inspected.

2.2.5 Instruction Parallelism

As a first small step to modeling parallel processing, one can take into account that
modern microprocessors can execute several machine instructions in each clock

Draf
t2.2. THE VON NEUMANN MODEL AND ITS VARIANTS 41

instruction
fetch

decode +
reg. fetch

execute
memory
access

write
back

Figure 2.4: A simple 5-stage pipeline [229] that splits an instruction execution
into fetching the instruction, decoding it and fetching input data that is stored in
registers, performing actual calculations, memory access, and writing back results
to registers.

cycle. This is achieved by pipelining and instruction parallelism. In pipelin-
ing, instruction execution is split into suboperations. Figure 2.4 shows a simple
5-stage pipeline. Current pipelines for high-performance processors are consid-
erably longer – sometimes using 20 or more stages. There is one pipeline stage
for each suboperation. Each pipeline stage handles one operation in each clock
cycle. Several such pipelines are running in parallel – often specialized to partic-
ular types of operations (integer, floating point, load, store, etc.). Thus, overall,
several dozen machine instructions are being executed in parallel at any point in
time. This works fine for straight-line sequences of instructions without too many
data dependencies between the operations. In this situation, conditional branch in-
structions are a problem because a branch can interrupt the stream of instructions.
When this happens, many partially executed instructions have to be abandoned,
their effect has to be rolled back, and it will take several clock cycles until the next
instruction is completed.

Processors therefore invest considerable resources into predicting the outcome
of a branch instruction. The instruction stream can then be continued in the pre-
dicted way without emptying the pipelines. In the most simple case, the compiler
can predict a branch as taken or not taken. For example, the branch at the end of a
repeat–until loop can be predicted as taken. This will fail only at the last iteration
of that loop. More sophisticated techniques discover patterns in the most recent
executions of a branch instruction using simple state machines [229]. Branch
prediction works surprisingly well in practice. Computer architecture textbooks
report typical rates of at least 90% correct branch predictions [229].

However, in some algorithms, branch mispredictions are hard to avoid. For
example, efficient comparison-based sorting algorithms need about n logn ele-
ment comparisons. Traditional implementations of these algorithms associate one
conditional branch with each of the comparisons. For fundamental information-
theoretic reasons, these branches cannot be predicted at all – they are taken 50%
of the time in a completely unpredictable way regardless of how much prediction

Draf
t42 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

hardware is used. In such algorithms, the pipeline interruptions due to branch
mispredictions can completely ruin performance. Algorithm analysis therefore
sometimes also analyzes how many branch mispredictions can happen [351, 478].
More importantly, there are techniques to avoid conditional branches [263, 420,
159, 37]. This can greatly improve performance. In order to perform comparison-
based algorithms without conditional branches, one has to dissociate comparisons
from branches. The idea is that only very simple operations should depend on
the comparison. For example, superscalar sample sort [420, 37] only performs an
increment operation if a comparison operation computes the value true. Such sim-
ple operations can be done using predicated instructions. These are only executed
if a special condition flag is set that is the outcome of a comparison. Otherwise,
predicated instructions do nothing. Note that skipping one machine instruction
costs only a fraction of a clock cycle while a branch misprediction costs several
clock cycles.

*Exercise 3 Develop a routine for binary search of an element x in a sorted array
a of size n that uses conditional branches only for testing loop exit and for a
conditional move of the form if c then a := b. You can assume that n is known
at compile time. Discuss how to generalize the code so that it can make a batch
of several searches in an instruction parallel way. Why is that still likely to be
slower than searches based on implicit search trees as used in super scalar sample
sort[420, 38]? Implement your solution and benchmark it compared to a more
classical formulation of binary search, e.g., [410, Section 2.7].

Open Problem 2 (Priority queues without branch mispredictions) Design a
priority queue that avoids conditional branches like the super scalar sample sort
[420, 37] and, at the same time, is as cache efficient as sequence heaps [396] . Can
this be implemented in such a way that significant performance improvements are
possible?

Open Problem 3 (Where do branch mispredictions matter?) Most algorithms
where branch mispredictions are known to matter are comparison-based algo-
rithms for sorting and related problems (e.g., merging and partitioning). Can
you find further algorithmic problems? Flow computations? Monte Carlo sim-
ulations? How should these algorithms be modified to eliminate hard-to-predict
branches?

SIMD Instructions. Another dimension of instruction parallelism is exploited

Draf
t2.3. EXTERNAL MEMORY 43

by SIMD instructions (aka vector instructions) that work on extra-wide registers
(currently up to 512 bits) containing short vectors of numbers (e.g., 32 entries of
16 bits each). For example, an addition of two SIMD registers would add the two
stored vectors component-wise.

2.3 External Memory

In computer architecture, there is a large spectrum of technologies for storing
data. In particular, we face a tradeoff between price per bit on the one hand and
speed on the other hand. Furthermore, there are fundamental physical reasons
(like the limited speed of light) why a large memory must have large access laten-
cies. Thus, there are good reasons why real-world (sequential4) computers with
good performance must have both large cheap memory and small fast memory.
This runs counter to the uniform memory in RAMs and a main principle in von
Neumann’s original idea of a universal computer [352]. We now discuss simple
abstract models that grasp the resulting memory hierarchy.

The basic external or secondary memory model (EM) [467], also called the
I/O model, is very simple; see Figure 2.5. We have a random access machine with
(fast) memory limited to M machine words. In addition, there is a large secondary
memory. Access to secondary memory is in blocks of size B. In algorithm the-
ory, analyzing external memory algorithms amounts to counting the number c of
block accesses (I/Os). Sometimes we also use the I/O volume is then cB. In AE,
we additionally analyze the internal work, e.g., by counting executed machine in-
structions as in the RAM model. The simplicity of the EM model makes it very

4For parallel architectures, there is an option to partition a large cheap memory into many small
pieces, each equipped with its own processor core that then has small uniform access latency to its
local piece of memory (aka processing in memory (PIM) [264]); see also Sections 2.4.6 and 2.5.5.

block transfers

fast
memory

register

B

external memory

M

ALU

Figure 2.5: The external memory model

Dra
ft

44 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

flexible. Slow and fast memory can be any two levels of the physical memory
hierarchy. The two levels hard disk and main memory were originally most im-
portant. Today, main memory and some unspecified level of the cache hierarchy
are at least equally important. The EM model is highly successful because of
its simplicity and because algorithms that perform well in this model often also
perform well in practice; see [330, 466] for overviews of results.

In the subsequent sections, we present further details and variants of the EM
model. This is perhaps the most detailed elaboration of a family of models in this
book. We view this as a convenient example of how a simple successful model
can relate to reality and refined models. The reader should assume that many of
the remaining models in this book deserve a similar amount of further detail. Sec-
tion 2.3.1 explains how many EM algorithms or their complexity can be expressed
based on sorting and scanning primitives. Sections 2.3.2 and 2.3.3 discuss how
the EM model does (or does not) grasp details of a real-world machine. Then
Section 2.3.4 generalizes the EM model to handle parallel disks. These are the
basis for modeling solid state disks in Section 2.3.5 and other nonvolatile memory
in Section 2.3.6. Peculiarities of hardware caches are discussed in Section 2.3.7.
Section 2.3.8 then explains how a simple twist of the EM model can be used to
model algorithms that perform well in multilevel memory hierarchies. Finally,
Section 2.3.9 discusses how virtual memory affects algorithm analysis and de-
sign. Another variant of the EM model yields a useful model for parallel memory
hierarchies; see Section 2.4.6.

2.3.1 Sorting and Scanning

Two simple algorithmic techniques permeate the design of external memory al-
gorithms: Scanning n elements (machine words) is possible with n/B I/Os. The
shorthand scan(n) is used for this expression. Sorting n elements takes sort(n) =
Θ(n/B⌈1+ logM/B n/M⌉) I/Os [6]. Using multiway mergesort (Section 11.1.3)
we can see that an upper bound for the constant factor in sort(n) is 2 for sorting
machine-word-sized elements.

Open Problem 4 (Exact lower bound for external sorting) The constant factor
in the lower bound is still open. Aggarwal and Vitter [6] basically show a factor
of 1 and that the factor becomes 2 when one assumes that the number of inputs
is the same as the number of outputs. However, this leaves open the existence of
more efficient algorithms that do an asymmetric amount of reading and writing.

Draf
t2.3. EXTERNAL MEMORY 45

Exercise 4 Describe an external sorting algorithm that needs just ⌈n/B⌉ output
operations. You can expend a large number of input operations. But try to limit
them to O

�
n2/BM

�
. Also, limit internal work to O

�
n2 logn/BM

�
.

The sorting bound is also a lower and/or upper bound for many other com-
putational problems even if the actual algorithms used to solve them are quite
different.

From an AE perspective, sorting and scanning are convenient ways to distin-
guish more or less complicated algorithms in a qualitative sense. However, in
practice, the term ⌈logM/B n/M⌉ is exactly one5 in many situations. Let us con-
sider the case of hard disk versus main memory. In the last few decades, the cost
ratio between mechanical hard disk memory and RAM has remained at around
200. This ratio is not likely to increase dramatically as long as RAM capacities
improve at least as fast as hard disk capacities. Hence, in a balanced system with
similar investments for both levels of memory, the ratio between input size and in-
ternal memory size is not huge. In particular, M/B is likely to be much larger than
than the cost ratio. But as long as M/B > n/M, we have ⌈logM/B n/M⌉= 1. The
cost ratio for nonvolatile memory6 (SSDs) versus main memory is even smaller.
We can have ⌈logM/B n/M⌉> 1 when straddling several layers of the memory hi-
erarchy, e.g., when fast memory is L1 cache size (kilobytes) and slow memory is
the main memory of a large server (terabytes).

2.3.2 What is the Block Size?

On the first glance, the block size B is a parameter defined by the hardware, e.g.,
the cache line size of a certain hardware cache level. However, a closer look
reveals that often there is not one clear block size imposed by the hardware and
that B should actually be considered a tuning parameter of the implementation.

This is particularly clear for mechanical hard disks. There are hardware-
imposed block sizes used for error detection and correction. However, these val-
ues are much too small to be useful for external memory algorithms. A reasonable
linear model for the time to access ℓ consecutive bytes of data on a hard disk is
α + βℓ where α is a startup overhead accounting for mechanical and software
delays and where β is the achievable data rate once access has started. Indeed,
it might be attributed to a historical accident that this model is unusual for hard

5Of course, the value is zero when processing can be done within internal memory.
6Nonvolatile memory does not lose its state when the power is switched off.

Draf
t46 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

disks but standard for message passing; see Section 2.5. The above linear model
suggests that B ≈ α/β is a reasonable value for the block size. If we make ran-
dom accesses that actually need less data per access, we are at most twice as slow
as using a small block size. If we make a large consecutive access we are at
most twice as fast as accessing the same amount of data with random access of
block size α/β . For current hard disks, this means that block sizes should be a
couple of megabytes. However, we can also turn this argument around. We can
achieve acceleration up to a factor of two by choosing a block size more appro-
priate for the application at hand. For example, for sorting we can choose large
block sizes as long as this leaves ⌈logM/B n/M⌉ at a value of 1. For index data
structures with access time O(logB n), we may want to choose smaller blocks; see
also Section 13.2.

We have moved this discussion outside the section on hard disks because it
emphasizes the fact that block sizes are tuning parameters. At the other extreme,
even hardware cache lines may not be the right choice for the tuning parameter B.
For example, many Intel processors access two consecutive cache lines consider-
ably faster than two arbitrary cache lines. Hence, setting B to two (or more) cache
lines may be a reasonable choice.

2.3.3 Modeling Mechanical Hard Disks

In Section 2.3.2 we used the formula α + βℓ for modeling the time needed to
access ℓ bytes of data on a disk.7 This is a gross oversimplification for mechanical
hard disks. There are three main additional issues illustrated in Figure 2.6.

A. The disk rotates and the time needed to rotate to the beginning of the in-
tended data block depends on the current rotation angle. Thus, for a partic-
ular data block, the rotational delay will oscillate over time corresponding
to a sawtooth-shaped periodic function.

B. The access head has to seek to the right track before accessing a block.

C. The disk rotates at fixed angular velocity8 and the data is stored with an
(approximately) fixed number of bits per millimeter of disk surface. This

7Hard disks are getting less and less important as this book is written. We still believe that this
section remains interesting as an example of how more detailed modeling can have an appreciable
performance impact yet is also impractical in many cases.

8There are exceptions, e.g., audio CDs.

Draf
t2.3. EXTERNAL MEMORY 47

implies that data stored on the outer zones of the disk is transferred faster
than data on inside zones. Further complications arise for example due to
caching within the disk and because faulty tracks on the disk are replaced
by reserve tracks (usually on the slow inside zones of the disk).

These peculiarities can in principle be exploited for algorithm tuning. Batches of
blocks to be read may be scheduled so that overall rotational delays are minimized
[191, 443]. Data accessed together can be stored close together. Important data
could be stored on outer zones.

Such tuning measures are good examples of optimizations one should often
avoid since they can be fragile and nonportable. These optimizations should only
be done on the right level of the software stack and using the right abstractions.
The processor controlling the disk can try to perform optimizations for issues A
and B when it is given batches or queues of outstanding I/Os. A disk usually
presents itself to the operating system as an array of blocks. Hence, the operating
system or a runtime system of a database could perform optimization for issue C
if it is understood that blocks with the smallest index are the fastest ones.

block

block

seek time

rotational delay

hard disk

cache
disk

Figure 2.6: Schematic drawing of a mechanical hard disk – illustrating seek time,
rotational delay, and different data densities.

Draf
t48 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.3.4 Parallel Disks

The external memory model has been generalized to consider D identical disks
– in one I/O step, D blocks can be transferred [6, 467]. Aggarwal and Vitter
[6] propose a simple variant where any D blocks can be accessed (referred to as
access-any variant). Vitter and Shriver [467] allow only one block to be accessed
from each disk (access one-each). Figure 2.7 depicts these two model variants.
In both variants, we can hope to reduce the number of I/O steps by a factor up to
D. To achieve this speedup, we need enough parallelism in the application. The
one-each variant in addition requires clever data allocation and disk scheduling
(e.g., see [141, 250] for sorting).

The one-each variant is more realistic than the access-any variant. The access-
any variant is still useful because it allows to discuss parallelism independently of
memory allocation and scheduling – see also Section 2.3.5 on SSDs. Moreover,
the access-any variant can emulate the one-each variant with surprisingly small
overhead [407] (a small constant factor using randomization) and there are gener-
alizations to asynchronous access, heterogeneous disks, etc. [397, 398].

Exercise 5 Give an example access pattern, where the one-each variant of the
parallel disk model takes D times more input steps than the access-any variant.
What changes with this pattern if each data block is independently allocated to a
random disk?

A simple way to exploit parallel disks is striping – we concatenate D physical
blocks of size B to one logical block of size DB. We can then apply any single-
disk algorithm using block size DB. This automatically exploits disk parallelism

...
...

D

ALU

B B B

M

external memory

ALU

B B B
D

M

external memory

multiple heads multiple disks

registers registers

Figure 2.7: The external memory model with parallel heads (access any) [6] and
parallel disks (access one-each) [467].

Draf
t2.3. EXTERNAL MEMORY 49

in a perfectly load-balanced fashion. The problem with this approach is that not
all applications can make very good use of such large block sizes or that there
may not be enough fast memory to store enough blocks in internal memory.

2.3.5 Solid-State Disks

Solid-state disks (SSDs) are built using semiconductor technology that does not
lose its memory when power is lost [331, 7]. Access is done in blocks to hide
access latencies and to simplify error correction. SSDs are cheaper than RAM
because their cells are slightly smaller, because they store several bits per cell,
and because one can stack memory cells in hundreds of layers. On the other hand,
SSD access is slower than RAM access. At the time of writing, SSDs are rapidly
replacing mechanical hard disks in more and more applications – they are faster,
more compact, and need less power. In particular, the nonvolatile memory of a
smartphone is essentially an SSD.

SSDs have smaller blocks than hard disks, higher overall bandwidth, and
much lower access latency. There are also two important qualitative differences
compared with hard disks. First, there is a marked asymmetry between reading
and writing. Writing is usually slower, consumes more energy, and often uses
larger block sizes than reading. More precisely, what is most expensive and uses
larger blocks is erasing data blocks which is required to overwrite them with dif-
ferent data later. Also, erasing the same physical block multiple times wears it out
and eventually destroys it. The disk controller therefore employs wear-leveling

... ...

...
...

...

... ...

......

...

... ...

...
...

...

...

...

...

...

request queues

result queues

controller
SSD

Figure 2.8: Schematic drawing of a solid state disk (SSD). Each cell stores several
bits. Many layers of cells and chips side by side give significant parallelism in
request processing.

Draf
t50 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

algorithms that change the mapping from logical to physical blocks to spread out
write accesses over the entire disk. For the user, it is important that background
processes for wear-leveling and erasing invalidated blocks can cause performance
anomalies in particular for applications with complicated writing patterns. Also,
a nearly full SSD can be much slower for writing than an empty one.

The second important difference is that to achieve maximum throughput of
random disk accesses, one needs to make many accesses in parallel. The currently
dominating NVM Express protocol (NVMe) therefore offers 216 command FIFO
queues, each of which can buffer up to 216 commands. Figure 2.10 illustrates this
view of an SSD. For example, in an external hash table benchmark [281] we use
an asynchronous parallel approach where up to 128 requests can be in flight at a
time. In a sense, each SSD device behaves like an array of many small parallel
disks. However, we have no control over the allocation of logical blocks to these
“sub-disks”.

Overall, two simple models for SSD seem reasonable. We can use the single-
disk EM model with a block size much larger than the physical block size of the
SSD. This will exploit the parallelism within the SSD because the controller in-
ternally stripes large blocks over the different memory modules. For applications
with many random accesses to small data objects, it is better to use the access-any
variant of the parallel disk model with a sufficiently large value of D to grasp the
parallelism within the SSD. The more complex one-each model is not helpful here
since we have no control over the allocation of blocks to disks.

Exercise 6 Produce a table comparing mechanical hard disks, SSDs and DRAM
memory at the current technology and market prices. Possibly include both main-
stream and high-end variants of the hardware. Compare cost per bit, bandwidth,
latency, and energy consumption. Document your methodology – from where do
you get the prices? How do you define latency? For energy consumption, can
you differentiate between reading, writing, and idling? For hardware that you
actually have at hand, try to compare actual measurements with data sheets or
benchmarks done elsewhere. Discuss differences.

2.3.6 Other Nonvolatile Memory

SSDs may be only an intermediate step to nonvolatile memory that looks more like
main memory than like a disk. This means that block sizes are cache line sizes
and that reads are as fast as for main memory. Writes may still be more expensive
in terms of time and energy consumption and the memory may wear out faster

Draf
t2.3. EXTERNAL MEMORY 51

so that the number of write operations to a cache line has to be limited. This
situation can be analyzed in the context of write-efficient algorithms [74] where
one considers write operations to main memory to be a factor ω more expensive
than read operations. Another interesting aspect of this is how to make algorithms
persistent when using such memory, i.e., to allow restarts after failures that erase
the local state of the processors and the content of the fast memory [76, 477].

2.3.7 Hardware Caches

One assumption of the EM model is that the algorithm has full control over the
content of the fast memory. In contrast, the content of a processor cache is con-
trolled by the hardware. A typical strategy are a-way set associative caches [229],
where a is a small constant: Suppose the cache contains ak cache lines. It is then
divided into k cache sets of size a. Cache line i is mapped to cache set i mod k.
Each cache set is managed separately using (an approximation of) the least re-
cently used eviction strategy (LRU), i.e., when a new cache line enters a cache set
s then the least recently used block in s is evicted; (see also Section 2.3.9). Some-
times the LRU strategy is only approximated. The case a = 1 is called direct-
mapped cache. Figure 2.9 illustrates this variant of the EM model.

In practice, set-associative caches work quite well, even for relatively small
values of a [229], e.g., a = 4. However, bad situations may arise. Even direct-
mapped caches are efficient if one maintains full control over memory allocation
and simple deterministic access patterns of the algorithm. For more complex ac-
cess patterns there is less previous work. In [326] we consider the situation where
the program scans k arrays of total length n. This covers many external memory

block transfers

registers ALU

...
. . .

cache lines of the memory external memory

B cache sets

a=2

fast
memory

B

Figure 2.9: External memory with set-associative fast memory.

Dra
ft

52 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

algorithms akin to sorting. If k > a, every element access may cause a cache fault
in the worst case. However, if the starting addresses of the arrays are randomized,
O(n/B) cache faults suffice provided that k = O

�
M/B1+1/a

�
. One can also bypass

the hardware cache replacement [189, 427] – although at the cost of considerable
overhead.

Exercise 7 For the computer you are mainly using, try to find as much informa-
tion as you can on its memory hierarchy: how many cache levels? block sizes?
associativity of each level? speed? Make a table and document your sources.

2.3.8 Cache-Oblivious Algorithms / Multilevel Hierarchies

Of course, we can design algorithms that explicitly handle multiple levels of mem-
ory hierarchy and then analyze the number of I/Os for each level. However, this
is rarely done since it leads to complicated algorithms and complicated results of
the analysis. Anyway, in practice usually two levels of the hierarchy will be the
performance bottleneck so that setting the parameters B and M of the EM model
to these parameters will yield an efficient program. However, which two levels
are relevant may depend on the actual machine and on the size of the input. For
example, when the input fits in the L3 cache, L2 cache misses may be the per-
formance bottleneck whereas, for large inputs, L3 cache misses may dominate.
Hence, in general we need an (auto)tuning mechanism to tune the parameters B
and M.

An elegant alternative to tuning is to design I/O-efficient algorithms that do not
rely on the values of B and M. Such cache-oblivious algorithms are automatically
efficient for all levels of the memory hierarchy [189, 279, 25]. For example, an
algorithm that just scans an array of size n will need scan(n) I/Os regardless of the
concrete values of B and M. Section 9.3 describes cache-oblivious unbounded ar-
rays and queue-like data structures. Hashing with linear probing (Section 10.4.1)
is another simple example for a cache-oblivious algorithm.

Open Problem 5 (AE for cache-oblivious algorithms) Few cache-oblivious al-
gorithms have been evaluated experimentally [89, 227, 91]. Even fewer can actu-
ally compete with the best cache-aware algorithms. Even defining “compete” is an
interesting question here. How much overhead is worth the robustness of avoiding
tuning? Does the cache-oblivious algorithm ever outperform a cache-aware algo-
rithm that uses fixed values for M and B across all inputs and machines? Hence,
AE for cache-oblivious algorithms is a wide-open topic.

Draf
t2.3. EXTERNAL MEMORY 53

Exercise 8 Perform a case study on engineering algorithms for matrix transposi-
tion. Previous algorithms and proof-of-concept implementations [279, 189] can
serve as a starting point. To simplify the situation, assume that we transpose
2k × 2k-matrices out-of-place, i.e., the result is in a separate piece of memory.
Compare

a) A straight-forward nested loop implementation

b) A tuned cache-aware algorithm that cuts the matrix into tiles of size B×
B. Subroutines for moving or swapping and transposing tiles should be
carefully tuned.

c) A simple recursive cache-oblivious algorithm

d) A tuned cache-oblivious algorithm that uses a tuned base case and a tuned
copy operation that may be similar to the ones developed for 2.

e) A carefully tuned code from a numerical library.9

Compare the versions for different input sizes and on different architectures.

2.3.9 Virtual Memory

Virtual memory is a combined hardware/operating system mechanism that allows
all processes to use the same logical address space starting from 0. Ideally, this
mechanism should be invisible. However, performance penalties due to the trans-
lation of virtual to physical addresses do show up and can also be modeled. One
important effect is due to the translation lookaside buffer (TLB) – a cache for m
page addresses that allows us to quickly translate accesses to these pages. TLB
misses can be modeled like cache faults for a cache where page size B is the vir-
tual memory page size and where the cache size is M = mB. One can reduce TLB
misses by configuring the operating system to use larger page sizes. Applications
that have many TLB misses (e.g. when they frequently access large hash tables)
experience memory access delays that are not constant but grow with the input
size. The reason is that tree-like data structures are used to resolve TLB misses
[261].

9The documentation of operation cmatrixtranspose in the Alglib library (www.alglib.net/
translator/man/manual.cpp.html, accessed Oct. 17, 2023) mentions that it is actually
using a cache-oblivious implementation. Often matrix transposition is a special case of a more
flexible operation, e.g., with the suffix matcopy.

Draf
t54 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

TLB

ad
d
re

ss
es

p
h
y
si

ca
l

ad
d

re
ss

es

datadata

registersregisters ALU

memorymemory

ALU

...

page table

virtual
addresses

Figure 2.10: Left: schematic of the RAM model with the address data path ex-
posed. Right: refined model of the address data path taking translation lookaside
buffer (TLB) and the page table data structure into account.

Virtual memory also supports programming techniques that would otherwise
not be available. For example, the Templated Portable I/O Environment (TPIE)
library for external memory computing [27] uses operating system mechanisms
to emulate a logical memory that is larger than the physical memory. However,
most efficient implementations of external memory algorithms use more efficient
and more flexible mechanisms. A related (efficient) technique is memory over-
committing where the logical address space used is larger than the physical one
but the program never accesses more than the physically available memory. This
allows the allocation of several large arrays whose total size is known but whose
individual size is unknown. Section 10.8 gives an application for space-efficient
hash tables.

When a large external memory is used to extend a small physical memory,
efficient caching mechanisms become essential. The LRU strategy mentioned
in Section 2.3.7 is considered reasonably effective here. However, it is expen-
sive to implement it precisely. Therefore, various approximations are considered
whose precise implementation depends on the capabilities of the required hard-
ware. For example, one can maintain a (possibly approximate) priority queue
of cached pages whose priority is a time stamp. Since maintaining precise time
stamps is too expensive, one can maintain a lower bound for the last access. When
a page has the lowest-known bound, it is not immediately evicted but goes into
a (possibly approximate) FIFO of eviction candidates. In addition, the page is
marked to throw an exception when it is accessed next. If this happens before the
page is actually evicted, a fresh timestamp is noted and used to reinsert it into the
priority queue.

A disadvantage of LRU is that it caches data that is merely scanned and never
accessed again. Therefore various refinements have been designed that evict pages
that are “not in active use”.

Draf
t2.4. SHARED-MEMORY PARALLEL MODELS 55

2.4 Shared-Memory Parallel Models

Perhaps the main weakness of the RAM model is that it considers only sequential
algorithms. However, it is difficult to make sequential computers faster. Increas-
ing the clock frequency reduces energy efficiency. Increasing instruction paral-
lelism only helps for a limited set of computations. Increasing the size of the
memory increases access latencies. Overall, there is a limited return on invest-
ment regarding performance when one invests more transistors or more energy
to get faster sequential computers. These limitations can be overcome by look-
ing at parallel computing that allows near-linear scaling of computing power with
the invested resources. Not surprisingly, the most successful models of parallel
computing are slight generalizations of the RAM model. In this section, we begin
with the approach to keep a global shared memory and to replicate the processing
cores. Section 2.5 replicates RAMs and connects them by a network. A more ab-
stract view taken in Section 2.6 is to look at a small set of parallelizable operations
applied to sets or sequences

We begin with the simple PRAM in Section 2.4.1 that can already serve as
a basis for devising parallel algorithms in a high-level fashion, concentrating on
exposing the parallelism in the problem. There, we also introduce several im-
portant conventions for analyzing parallel algorithms. On the other hand, real
shared-memory machines are ubiquitous now from smartphones to servers with
hundreds of cores. Further subsections cover important aspects of real-world
shared-memory machines.

2.4.1 Classical Parallel Random Access Machine (PRAM)

A PRAM consists of p execution units (PEs) of random access machines (RAMs,
Section 2.2.1) attached to a single shared memory. The PEs are numbered from
1 to p (or from 0 to p− 1, or whatever is most convenient for the algorithm de-
scription), which are their IDs. As in the RAM model, instructions are assumed to
need constant time. The PEs work in a lockstep fashion, i.e., those PEs that load
a memory cell do so based on the value at the beginning of a time step. Those
that write a value to a memory cell store this value during the step and the value
is visible there in the next time step.

PRAMs come in several variants depending on the rules for concurrent access
to the same memory cell. In the acronyms for these variants, an “E” stands for
“exclusive”, i.e., concurrent access to the same memory cell in the same time step
is forbidden and a “C” stands for “concurrent”, i.e., concurrent access is allowed.

Draf
t56 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

PE 1 PEPE 2

...

p

shared memory

Figure 2.11: The parallel random access machine (PRAM).

By distinguishing between read access (R) and write access (W), we get three
main model variants – EREW, CREW, and CRCW.

Exercise 9 What would an ERCW PRAM be? Discuss why this variant is not
important.

For CRCW PRAMs there are several submodels depending on the semantics
of concurrent writes:

Common: Concurrent accesses are only allowed if all PEs that attempt to write
to the cell concurrently write the same value. This is the weakest model
variant but is already surprisingly powerful.

Arbitrary: If several different values are written concurrently to a cell, one of
these values will be stored. The algorithm has to remain correct regardless
of which of the values is chosen.

Priority: Among the PEs that try to write, the one with the smallest PE ID writes.
This should not be confused with a prioritization based on the written value
which falls into the Combine category below.

Combine: A commutative and associative operation like sum, min, max, or xor
is applied to the written values. This is a fairly expensive operation.

Table 2.1 gives examples.
An abstract representation of a PRAM computation is a directed acyclic graph

(DAG) of elementary operations where one measures the size of the DAG (work)
and the number of operations on its longest path (span) which is a measure for
the latency of a computation. The goal is often to achieve work similar to the
best-known sequential algorithm and low span, preferably polylogarithmic in the

Draf
t2.4. SHARED-MEMORY PARALLEL MODELS 57

Table 2.1: Results of a concurrent write operation to memory cell 42 using differ-
ent variants of the CRCW PRAM model.

input result
PE 1 PE 2 PE 3 Common Arbitrary Priority Combine-Add

3 3 3 3 3 3 9
1 2 3 Error x ∈ {1,2,3} 1 6
2 1 3 Error x ∈ {1,2,3} 2 6

2 5 1 7 8 5 9 5

2 7 8 15 23 28 37 42

2 5 1 7 8 5 9 5

2 7 8 15 23 28 37 42

d
o

w
n

w
ar

d
s

ed
g

es
 g

o

+
+

+
+

+
+

+

+

+ +

+

+ + +

+

+

+

++

Figure 2.12: DAGs for two ways to compute 8-element prefix sums.
Left: with span and work 7 (additions). Right: with span 3 and work 12.

input size n, i.e., logO(1) n. See Figure 2.12 for an example. Note the relation to
the size and depth of a circuit explained in Section 2.8.1.

PRAMs have been criticized as unrealistic because of their lockstep operation
principle and because they do not account well for communication costs. How-
ever, our impression is that this criticism is only partially warranted. PRAMs are
an easy way to express parallelism and are thus a logical first step to a paral-
lel algorithm. Many PRAM algorithms have later been implemented on realistic
machines. In our opinion, what should be questioned is the large number of in-
efficient PRAM algorithms that invest a polynomial factor of additional work in
order to achieve a polylogarithmic span. However, this issue is not so much due to
problems with the PRAM model but with an unrealistic framework for algorithm
analysis.

Open Problem 6 (Slow but efficient parallel algorithms) Polylogarithmic span
has been a primary objective of parallel algorithm development since the 1980s for
complexity-theoretic reasons [214] – problems that do not allow polylogarithmic
span were deemed to be hard to parallelize. However, from an AE perspective,
efficient algorithms with larger span, such as nα for α < 1, are perfectly fine. Can
we find such algorithms for problems that are otherwise hard, e.g., BFS, strongly

Draf
t58 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

connected components (see also [179, 144])? Recently, several promising theo-
retical results in this direction have been achieved for problems related to graph
reachability [256, 176].

Exercise 10 Describe fast algorithms that perform the logical and of n Boolean
values using n PEs of a PRAM for a) CREW PRAM; and b) common CRCW
PRAM. Compare the achieved running times.

2.4.2 Asynchronous PRAM

To refine PRAM algorithms for real-world shared-memory machines, one can use
an asynchronous model with queued writing [202, 203, 410]. This is a clean
model of the memory access contention that is a major performance problem in
practice. Let us single out the aCRQW PRAM model – the asynchronous con-
current read queued write PRAM [410, Section 2.4.1]. We assume concurrent
reads without delays since the local caches of the PEs enable contention-free con-
current read accesses in many practical situations. However, concurrent writing to
the same memory cell involves queuing.10 More concretely, a FIFO queue is asso-
ciated with every memory cell. During any clock cycle and for any cell C, first, all
read operations to C return its old value. Then write operations to C are appended
to the queue of C – possibly several ones. Finally, the first write operation in the
queue of C is executed and the corresponding operation finishes. The remaining
write operations remain in the queue, delaying the corresponding PEs. Table 2.2

10In practice, contention may also happen when different cells are accessed, e.g., when they are
located in the same cache line (false sharing). Careful implementation can often avoid such effects.

Table 2.2: Example of queued writing where PEs 1–3 concurrently access mem-
ory cell S[42]. Each row corresponds to one clock cycle on an aCRQW PRAM
(which is still an abstraction of a real-world machine).

S[42]
value queue PE 1 PE 2 PE 3

0 ⟨⟩ S[42] :=11 S[42] :=22 S[42] :=33
11 ⟨2,3⟩ S[42] :=111 queued queued
22 ⟨3,1⟩ queued instr. x queued
33 ⟨1⟩ queued instr. y instr. v

111 ⟨⟩ instr. u instr. z instr. w

Dra
ft

2.4. SHARED-MEMORY PARALLEL MODELS 59

gives an example. Other operations may also vary in their execution time – we
drop the lockstep synchronization assumed for PRAMs. Further variants can be
considered.

2.4.3 Atomic Operations

To achieve consistent behavior in asynchronous shared-memory machines, we
need atomic operations that perform a set of memory operations uninterrupted by
other PEs; see also [410, Section 2.4.3]. The most widely considered atomic oper-
ation is compare-and-swap (CAS). A call CAS(i,e,d) specifies a value e expected
to be present in memory cell i and the value d that it wants to write. If the expec-
tation is true, d is written to memory cell i, the operation succeeds by returning
1. If the value is different, some other PE has modified cell i in the meantime.
CAS writes the new value of cell i into e and fails by returning 0. See Table 2.3
for an example. CAS can be used to implement locks and other synchronization
primitives. It can also be used to update the content of a cell. For example, a
loop of CAS operations can be used to atomically add an offset to the content of
a cell. This fetch-and-add operation as well as similar update operations are also
directly supported by many architectures (see Table 2.4 for an example). Particu-
larly special are priority updates, where [432] S[i] := max(S[i],x). If one assumes
that updates arrive in an order that is not correlated to their value, the cell value
changes only a logarithmic number of times and thus the updates lead to little
contention.

Table 2.3: Example of two concurrent CAS instructions executed on memory cell
S[42] in the aCRQW PRAM model. The columns labelled R1 and R2 give the
current value of these registers. PE 1 succeeds in writing the value 1. PE 2 is first
queued and then its CAS instruction fails because the actual value of S[42] is now
1 while value 0 was expected. The actual value is returned in register R1.

S[42] PE 1 PE 2
val queue instruction R1 R2 instruction R1 R2

0 ⟨⟩ R2 :=CAS(42,R1,1) 0 -1 R2 :=CAS(42,R1,2) 0 -1
1 ⟨2⟩ instr. x 0 1 queued 0 -1
1 ⟨⟩ instr. y 0 1 instr. z 1 0

Some architectures support transactional memory. Here, a computer program
can label a (small) subsequence of instructions as a transaction. The hardware

Draf
t60 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Table 2.4: Example of two concurrent fetch-and-add operations incrementing
memory cell S[42] in the aCRQW PRAM model.

S[42] queue PE 1 PE 2
0 ⟨⟩ fetchAdd(42,1) fetchAdd(42,1)
1 ⟨2⟩ instr. x queued
2 ⟨⟩ instr. y instr. z

guarantees that a transaction is either executed atomically or fails without chang-
ing the memory. Transactions can immensely simplify the design of concurrent
programs and they often improve performance. A downside is that there are no
hard guarantees that transactions will eventually succeed (perhaps after some re-
tries). Hence, a program also needs a fallback implementation using traditional
techniques such as locks or simpler atomic operations.

Exercise 11 Repeat Exercise 10 (logical and) for the aCRQW PRAM using CAS
instructions. How can you achieve logarithmic worst-case execution time?

2.4.4 Lock-Free and Wait-Free Algorithms

Multiple threads can stand in each other’s way in highly complicated ways. For
example, three threads might wait for locks held by other threads in a cyclical
fashion – a deadlock situation that can bring the system to a standstill. A particu-
larly complex situation is when a thread t holds a lock ℓ and then is itself blocked;
for example, because it currently does not have a PE assigned to it by the oper-
ating system or because it waits for the completion of an I/O operation. Thread
t can then delay many other threads waiting to acquire lock ℓ. Therefore, there
has been intensive work on algorithms that avoid such situations. A non-blocking
algorithm avoids any kind of locking, i.e., no blocked thread can block another
thread. A lock-free algorithm moreover guarantees that some thread in the system
can always make progress towards reaching its overall goal. Finally, a wait-free
algorithm guarantees progress by each thread. For more details and examples
refer to a widely used textbook [233].

Open Problem 7 (Scalable concurrent algorithms with or without locks)
Many lock-free algorithms seem to be so complicated that papers on them only
discuss their correctness. However, we also would like to know their scalability
when running on p PEs (i.e., hardware threads). There are very few results in

Draf
t2.4. SHARED-MEMORY PARALLEL MODELS 61

this direction and solving such problems might be an important step to better
concurrent algorithms. In particular, many current lock-free algorithms have
severe scalability bottlenecks. An example on priority queues can be found in
Section 12.5.2.11 If we use an asynchronous PRAM model, we can also exploit
assumptions that do not hold for general lock-free algorithms. In particular, each
thread t gets permanently assigned a PE. Thus, we can often prove that t will only
hold a lock for a constant amount of time. Therefore, locking does not necessarily
stand in the way of progress guarantees.12

2.4.5 The Work-Span Model

A more abstract way to look at shared-memory computations is the work-span
model (aka work-depth model) where we abstract from the actual number of pro-
cessors [4, 75]. We only look (1): at the total work W performed by a computation,
i.e., the time needed for machine operations that are part of the actual computa-
tion, and (2): at its span T∞(aka depth), i.e., the longest sequence of dependent
operations within the computation. Roughly, the span is the time needed when
an infinite number of processors is available. The computation forms a graph of
dependencies that is unfolded using fork operations that spawn additional threads
and atomic shared-memory operations. The model comes in different variants de-
pending on what exactly these operations can do. In this book, the default will be
binary forking [75] together with the aCRQW model from Section 2.4.2 and the
atomic operations from Section 2.4.3. In particular, this allows parallel recursion.
Figure 2.13 gives an example. Circuit models (see Section 2.8) take a similar,
more low-level and hardware-oriented view of computations.

Exercise 12 Show that function sumArray in Figure 2.13 has work O(n) and span
O(logn). Implement it using a system supporting task creation. Now tune it, e.g.
by using a larger base case.

An obvious lower bound for the time needed to execute a computation in the
work-span model on a PRAM with p PEs is

T (p) =
W
p
+T∞.

11The underlying paper [480] also gives a curious example of an algorithm that uses locks but
is nevertheless wait-free because it never waits for a lock.

12In practice, we may have to ensure that the operating system indeed never takes away the
assigned hardware thread, e.g., by reserving one or several cores for the operating system. We also
have to be careful about threads that perform I/Os.

Draf
t62 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Function sumArray(a : Array , i, j) // compute ∑ j
k=i a[k]

if i = j then return a[i]

else return sumArray(a, i,
j

i+ j
2

k
) ∥ sumArray(a,

j
i+ j

2

k
+1, j)

sumArray(a,1,3)

sumArray(a,1,2)

sumArray(a,1,1)

sumArray(a,4,4)

sumArray(a,2,2)

sumArray(a,3,3) sumArray(a,5,5)
13

sumArray(a,1,5)

4 4
sumArray(a,4,5)

1 5

68

14

3 1 4 1 5a:

Figure 2.13: A function using parallel recursion to compute the sum of the ele-
ments of an array. The picture gives an example for the array [3,1,4,1,5].

A crucial result is that using appropriate load balancers, this is also an upper
bound at least in a probabilistic sense using randomization in a work-stealing load
balancer [78] (see also [410, Section 14.5, 14.6]).

2.4.6 Parallel Memory Hierarchies

The Parallel External Memory (PEM) model [26] is a natural extension of PRAMs.
RAMs with fast memory of size M each are attached to a large shared memory. As

PE 1 PEPE 2

block transfers

p

...

shared external memory

M M M

B B B

Figure 2.14: The parallel external memory model (PEM).

Draf
t2.4. SHARED-MEMORY PARALLEL MODELS 63

in the I/O model, access to that memory is in blocks of size B. As with PRAMs,
we can consider several variants with respect to what kind of concurrent accesses
are supported. PEM is an elegant way to model the differences between the cost
of local and global memory accesses.

Exercise 13 Describe an algorithm that transposes an n× n matrix on a PEM
using O

�
n2/Bp

�
I/O steps assuming M > B2.

However, as with basic PRAMs, the PEM model is unrealistic with respect to
the cost of synchronization and contention. To handle this issue, let us introduce
an asynchronous variant with queued writing, PEM+, that adds block access to
the aCRQW PRAM model from Section 2.4.2. One can now also consider atomic
operations on the block level. Unfortunately, current processor architectures only
support atomic operations on machine words (and sometimes on double words).
On the other hand, hardware transactional memory (see also Section 2.4.3) oper-
ates on cache lines. Hence, let us assume that PEM+ also supports transactions.

One issue with the PEM model that has led to confusion is that Vitter and
Shriver [467] had previously introduced a parallel external memory model. But
for them, M is the overall size of the fast memory. This implies that the bounds
based on the original model [467] (e.g., [387]) are harder to obtain than bounds in
the PEM model and require more sophisticated algorithms that treat communica-
tion and I/Os separately.

The PEM model is a good abstraction of a shared-memory machine where the
PEs have a private cache and symmetric access to the main memory. However,
many practical machines have a more complicated hierarchical structure that can
be approximated by a tree of PEs. Level i of the memory is partitioned into ki

pieces and a subtree of p/ki PEs share access to that piece. Consider a fictitious
but realistic example: Four hardware threads of a core may share an L1 cache. Six
cores on a chiplet may share an L2 cache. Three chiplets may share an L3 cache
on a processor socket. Two sockets may have shared access to the main memory.
Figure 2.15 illustrates this example. Some of the aspects shown in Figure 2.1 can
also be mapped to this model. In that example, k1 = k2, i.e., each core has its own
L1 and L2 cache. This can make sense in practice since these two cache levels
can reflect different tradeoffs between latency, size, and cost per bit. Similarly,
SSDs and main memory may both be attached to sockets although they differ in
size, cost, latency, and volatility.

Section 2.5.5 further generalizes the hierarchical model to allow horizontal
communication on each level. In practice, this is also relevant in a shared-memory

Draf
t64 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1 L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

L2

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

L2

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1 L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

L2

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

ALUs

threads

L1

L2

ALUs

threads

L2

ALUs

threads

L3

L2

ALUs

threads

L3

Main Memory

Figure 2.15: Example of a shared-memory machine with p= 144 threads, k1 = 36
cores, k2 = 6 chiplets, and k3 = 2 sockets.

setting. In particular, each socket may be directly connected to several main mem-
ory modules. Every core can still access every memory module also on remote
sockets. However, the access costs will be larger the “farther away” the memory
module is. This issue is known as non-uniform memory access (NUMA). Sock-
ets13 are therefore also called NUMA nodes.

Of course, completely analyzing algorithms in such a complex model is even
more forbidding than multilevel external memory. However, we can adopt the
approach to analyze a selected aspect like the number of I/Os on a particular level
that experiments may indicate as a bottleneck. We can also generalize the ap-
proach of cache-oblivious algorithms to parallel memory hierarchies [118].

2.4.7 Graphics Processing Units (GPUs), Accelerators, etc.

The transition of traditional general-purpose sequential processors to multi-core
processors has been a fairly conservative process leading to processors support-
ing a moderate number of parallel threads, favoring fast individual cores with

13Or any part of a machine that has uniform access to a set of memory modules, e.g., a chiplet
within a multi-chip module.

Draf
t2.4. SHARED-MEMORY PARALLEL MODELS 65

large cache memories and large main memories. It turned out that this is not
the ideal path to maximum peak arithmetic performance or maximum memory
bandwidth. A more radical approach is to support massive parallelism even on a
single chip dedicating a larger fraction of chip area to arithmetic units and to con-
nect it to memory chips with a different tradeoff between bandwidth, latency, and
cost. Figure 2.16 illustrates this tradeoff. Originally fueled by the large market
for hardware accelerated computer graphics (e.g., for games), so-called graphics
processing units (GPUs) have been particularly successful. Since the beginning
of the millennium, they developed from special purpose processors to general pur-
pose processors (GPGPUs) that are less and less different from traditional CPUs.
GPU applications are now coming from a much wider range, with machine learn-
ing and mining crypto-currencies as major driving forces. In high-performance
computing, the biggest machines currently invest heavily in GPU hardware and
thus exert major pressure on application developers to use GPUs for more and
more applications.

Exercise 14 Compare current high-end CPUs and GPUs of leading manufac-
turers in a table. Possible rows of the table could be price, number of tran-
sistors, thermal design power, cache sizes, maximal attached memory, memory
bandwidth, peak arithmetic performance for various number systems, and perfor-
mance for some basic tasks. It would be particularly interesting to also include
performance for basic operations that are not the core domain of GPUs, e.g.,
sorting, hash table access,. . . . Interpreting this data might involve normalizing
performance in relation to price or power consumption.

This has not been the only development that makes the landscape of com-
puter architecture more heterogeneous. Processors now routinely contain cores
that have the same instruction set architecture but different microarchitectures.
Typically a mix of high-performance cores with slower but more energy-efficient
cores. There are also special units for generating random numbers, for performing
cryptographic operations, for data (de)compression, etc. Highly interesting is also
reconfigurable hardware (field-programmable gate arrays, FPGAs).

Heterogeneous computing opens up interesting algorithmic questions con-
cerning the scheduling of computations on heterogeneous resources. However,
from the point of view of abstract models of computation, we have to be careful
to keep the model simple. Therefore, it seems a good approximation to decompose
a computation into parts where each part may have a different kind of processing
unit that can handle it best. We can then analyze each part in a model appropriate

Draf
t66 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

for this processing unit. We also identify bottlenecks, i.e., parts of the computa-
tion that may dominate cost for the available hardware. In particular, parts that are
not bottlenecks can then also be executed on hardware that is not ideally suited for
it. For example, a numerical computation might require some preprocessing that
works best on the CPU followed by an expensive computation that works best on
the GPU. Then we might decide to perform the preprocessing on the GPU anyway
in order to keep the program structure simple and to save data transfer costs be-
tween CPU and GPU. In this case, the simplicity of the GPU preprocessing may
be more important than an efficient implementation. With this process, we will
often arrive at an implementation that works on simple homogeneous hardware or
that has a small number of stages working on different hardware. Further tuning
by offloading parts of the computation to inappropriate yet idle hardware is a pos-
sibility but often not worth the effort.14 It certainly does not warrant a full-fledged
heterogenous model of computation. In summary, heterogeneous computing is a
reality that we have to face. On the other hand, overtuning to use all parts of such
hardware can be considered an anti-pattern of software engineering.

We still need models for the different components of a heterogeneous sys-
tem. Here simplicity is again an important guiding principle. For example, high-
performance cores and efficiency cores in a modern processor still fit into the
general models for shared-memory computing. We only have to be careful not to
assume that all cores have the same speed. Note that this is not even guaranteed
on homogeneous cores. For example, a recent high-intensity computation might
have forced one core to reduce its clock frequency due to overheating. Often ba-
sic load balancing techniques will be able to handle this situation. Let us have a
closer look at GPUs to consider a more interesting example:

Modeling GPUs. Modeling GPUs is an open problem because different ven-
dors have different architectures that also change from generation to generation.
Even a single architecture generation contains different compute units, e.g., for
general-purpose processing, tensor processing, ray tracing, texture mapping, or
video encoding. Let us make the case for maximal simplicity here. Our general
discussion of heterogeneity implies here that we may focus on one stage of an ap-
plication that has one type of computing unit that is most useful. Often, these will
be the general compute units. The main difference between these units to classical
CPU cores is quantitative. For example, an NVidia RTX 5000 Ada GPU contains

14For example, suppose we use a GPU with 1PetaFlop peak performance to perform a matrix
multiplication. Offloading part of this computation to CPU that can do 200 GFlops, i.e., less than a
per mille of that work, will not be very helpful and may actually harm energy consumption.

Draf
t2.4. SHARED-MEMORY PARALLEL MODELS 67

12800 CUDA cores, 100 times as many as a contemporary high-end server CPU.
On the other hand, it has only 32 GByte of memory while a server CPU can ad-
dress several terabytes of memory. Some server CPUs have up to 1152MByte
of cache memory while the RTX 5000 GPU has only 72MByte (already up by
an order of magnitude from the previous generation). These differences in num-
bers already by themselves imply a significantly different programming style and
spectrum of applications without the need for different models of computation.

There are further architectural differences that may warrant a GPU model of
computation. However, there also seems to be some convergence in the devel-
opment of CPU and GPU architecture. For example, a major difference between
GPUs to CPUs is that there are groups of GPU threads that share the same stream
of machine instructions (called a warp in NVidia CUDA). However, threads in
a warp acquired increasing autonomy in subsequent generations of architecture.
On the other hand, SIMD instructions are gaining increasing importance in CPU
architectures. These work on registers that contain multiple machine words (cur-
rently up to 512 bits), applying the same operation to multiple pieces of these
registers (see also Section 2.2.5). The effect is quite similar and one might imag-
ine that a CPU investing heavily in SIMD units with otherwise lightweight cores
and small caches might have similar tradeoffs as a GPU.

Another important feature of the CUDA programming model is that there is a
hierarchy of threads – one or multiple kernels executing a grid of thread blocks,
which are themselves partitioned into warps. Optionally, there is an additional
level of thread-block clusters. Threads within the same block can interact via
on-chip shared memory. Note that CPUs also have some hierarchy reflecting the
hardware; see Section 2.4.6. Hence, overall we are undecided. GPU and CPU
programs are sufficiently different to make it likely that different models may help
to understand this more abstractly. On the other hand, architectural convergence
and the strife for simplicity suggest that we can use the same shared memory
models and keep in mind that different key parameters like the number of cores
and cache sizes can have big impacts even within the same general model.

Exercise 15 Compare existing programming models for GPUs like CUDA, OpenCL,
or Vulkan. Identify commonalities and differences between the models. Where do
these models deviate from models that are compatible with CPU programming?

Open Problem 8 (Modeling GPUs) Develop a simple and useful model for GPU
processing that works for the most important vendors and is stable over multiple
architecture generations.

Draf
t68 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

GPU CPU

computing L1/L2 cache L3 cache main memory

Figure 2.16: Illustration of the relative areas invested into computing and memory
resources in GPUs (left) and CPUs (right).

2.5 Distributed Models

PE 1 PEPE 2

memory
local

memory
local

memory
local

p

...

network

Figure 2.17: A distributed-memory parallel machine.

A simple and highly scalable way to build parallel computers is to connect
multiple smaller computers (nodes – perhaps themselves shared-memory parallel
machines) by a communication network. Algorithms working on such machines
then perform local computations and communication. While there is a large va-
riety of concrete communication operations, these are usually implemented using
point-to-point communication of messages, where one node sends a message to a
receiver node. Alternatively, the system may support access to blocks of the mem-
ory at remote nodes. However, from the algorithmic point of view, this makes little
difference, so we stick to the message view here.15

15Some systems also have hardware support for some of the collective operations from Chap-
ter 19. Radio networks and Ethernet support broadcast to a set of neighboring nodes.

Dra
ft

2.5. DISTRIBUTED MODELS 69

How can we model communication cost? Let us consider a simple situation
first, where two nodes exchange messages of length ℓ and the network allows
direct communication between these two nodes. To eliminate synchronization
delays, also assume a situation where messages go back and forth repeatedly (the
ping-pong benchmark [238]). The average time per message transfer will then
have a constant offset – the startup overhead – plus a term that depends on ℓ.
The startup overhead is mostly due to the underlying software and thus highly
dependent on which message-passing software is actually used. The latter term
might be assumed to be approximately linear in ℓ – see also Section 2.5.1 below.
The function can also have steps in it because long messages are likely to be
chopped into packets of fixed size. Moreover, different protocols might be used
for different ranges of message sizes. So, macroscopically, we might expect a
piecewise linear function where each sub-function has small steps.

Exercise 16 Implement the ping-pong benchmark on your system, e.g., using
MPI. Running two processes on different machines, make detailed measurements
of the round-trip time as a function of message length. Make multiple repetitions
and measure average time as well as variance and outliers. Discuss possible
explanations for deviations from the simple linear model (α + ℓβ).

In more general situations, things get much more complicated. Communica-
tion cost can depend on where the nodes are in the network, how the communica-
tion is delayed by traffic between other nodes (congestion), and what the receiver
is currently doing (for example there might be long queues of messages currently
waiting to be processed and complicated rules for matching messages that the re-
ceiver is willing to process). The startup latency may be very high if the nodes
communicate for the first time. This is because communication often requires a
data structure for a communication channel between pairs of nodes. This data
structure needs to be initialized when a node pair communicates for the first time.
On large systems, there may also be insufficient space for communication chan-
nels between all pairs of nodes so that channels can also be deallocated. Even if
the network and the communication software behave in a predictable way, running
time analysis of an application based on message passing can be complicated by
synchronization delays. For example, an operation that receives a message has to
wait for the matching message to be sent.

*Exercise 17 In continuation of Exercise 16, now consider a situation where p
processes are matched up in pairs. Concretely, for even p, consider a pseudo-

Draf
t70 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

random permutation (see Section 10.1.8) π and let PE π(2i) communicate with
PE π(2i+ 1). How does the speed of communication change with p? Are there
increased fluctuations? Discuss. How does the speed change again if you change
π after every iteration (or after a small number of repetitions) with a barrier syn-
chronization (see, e.g., [410, Section 13.4.2]) in between?

Machine models for distributed-memory parallel computing cannot grasp all
these complex details. Hence, simplifications are necessary and naturally lead to
a wide spectrum of possible models. We describe some of the most popular ones
below. Also, it should be noted that modern nodes of distributed-memory ma-
chines are shared-memory parallel machines themselves. Section 2.5.5 discusses
how to handle such hierarchical systems.

2.5.1 Point-to-Point Fully-Connected Communication

The standard model for distributed-memory parallel machines in this book (the
point-to-point model) is very simple. All p PEs are connected by a network. A PE
can send a message of size ℓ to any other PE in time α +βℓ [185, 112, 410]. Here,
α is the startup overhead and β controls the bandwidth of communication. For
simpler asymptotic algorithm analysis, the parameters α and β are sometimes
treated as constants. In that case, we often get very similar complexities as in
PRAM algorithms. In particular, via PRAM emulation [389], one can see that the
slowdown compared to PRAM is at most a logarithmic factor.16

However, α ≫ β in many situations and because also the communication
bandwidth can be much lower than the local rate of computation,17 we also some-
times treat the parameters as variables in asymptotic analysis.

Open Problem 9 (Scalable middleware)
As pointed out above, current systems software is sometimes far away from the
simple point-to-point model discussed in this section and implicitly assumed in
countless programs. Better approximating it in large systems would greatly sim-
plify parallel software development. Concrete problems involve, for example,
avoiding costly and unpredictable connection setup overhead and reducing mes-
sage matching overhead when many messages arrive.

16Roughly, we can resolve contention in accessing a memory cell by a tree combin-
ing/replicating the queried or accessed data.

17More precisely, β ≫ γ where γ is time needed to execute a (typical) machine instruction.

Dra
ft

2.5. DISTRIBUTED MODELS 71

Open Problem 10 (Low latency communication hardware and middleware)
There is no physical reason why the startup latency α should be orders of mag-
nitude larger than the time per machine word β . Indeed, there are many efforts
in that direction but it seems that more can be achieved. What might help is a
model where threads do not inject single messages into the system but batches of
messages.

Communication in our variant of the model is assumed to be single-ported;
that is, a PE can only participate in a single communication at a time. More pre-
cisely, we assume the full-duplex model where a PE can at the same time send
one message and receive another one – potentially involving two different com-
munication partners. See Section 2.5.1.2 for variants of this aspect. A PE has
full control over when it sends messages. However, the asynchronous nature of
distributed-memory computing implies that it cannot directly control when mes-
sages arrive. Hence, our cost model has to take into account contention on the
receiver side. We use a queuing model similar to the aCRQW PRAM model dis-
cussed in Section 2.4.2. When a message is sent to PE i, it is appended to a queue
of messages already waiting for delivery to PE i. Thus it will experience a delay
corresponding to the sum of the communication costs of the previously queued
messages. The sender may or may not experience this delay or part of it.

2.5.1.1 Synchronization by Communication

PEs can coordinate by communication operations not only due to the information
contained in the messages but also because they imply synchronization. In partic-
ular, receiving a message m implies that m has been sent by some PE i, which in
turn implies something about the state of the computation at PE i. Practical com-
munication libraries such as MPI also offer several variants of synchronization by
communication. The variants we describe above use the basic semantics of the
MPI send operation, where the call returns when the memory areas containing the
message can be overwritten again. There is also a synchronous send operation
where additionally the matching receive operations must have started executing.
Furthermore, there are asynchronous send and receive operations and ways to
check whether messages have arrived or whether asynchronous operations have
finished.

Exercise 18 Implement the operation barrier that synchronizes all processors us-
ing point-to-point communication. The operation should take time O(α log p).

Draf
t72 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Hint: if you are out of ideas, check [410, Section 13.4.2].

2.5.1.2 What Communications Can Be Done in Parallel?

We can distinguish between several variants of the point-to-point model where it
may or may not be allowed to receive a message at the same time as sending a
message:

half-duplex: At any point in time, each PE can either send or receive a message.

full-duplex: Each PE can send and receive one message concurrently.

postal model: A restricted form of full-duplex where concurrent send and receive
is only allowed if the communications partners are the same; that is, if PE i
sends to PE j, it may only concurrently receive from j.

Multiported variants where K > 1 concurrent communication partners are allowed
have also been considered [46, 456] and are sometimes supported by hardware.

In this book, we mostly assume the full-duplex model because coordinating
the PEs to obey the constraints of the half-duplex model is more complicated than
it may appear. In particular, while it is clear that the full-duplex model can be up to
two times faster than the half-duplex model, there are cases where the difference
is larger. For example, consider three PEs A, B, and C that want to communicate a
message of size ℓ in a circular fashion, i.e., A sends to B, B sends to C, and C sends
to A. This can be done in time α +βℓ in the full-duplex model. In the half-duplex
model, it takes three times as long; see Figure 2.18.

Things get even more complex when we consider the more general problem
of scheduling the exchange of a set of messages with uniform length (see also
[410, Section 13.6]). It turns out that in the full-duplex case, this problem can be

:

:

:

half−duplex

receive
send

send
receive
send
receive

full−duplex

:

:

:

A B

C

A

B

C

A

B

C

m1

m2m3

Figure 2.18: Communication of three messages in a cyclic pattern needs only one
step with full-duplex communication yet three steps using half-duplex communi-
cation.

Draf
t2.5. DISTRIBUTED MODELS 73

reduced to the problem of edge-coloring a bipartite multigraph. This problem can
be solved in polynomial time and the number of steps (colors) needed is always the
obvious lower bound given by the maximum number of messages sent or received
(the maximum degree in this graph). There are also fast parallel algorithms for
edge-coloring bipartite multigraphs. In contrast, the corresponding problem for
the half-duplex model is edge-coloring a general multigraph. This problem is NP-
hard and the number of steps may be up to 3/2 times the number of messages
sent or received. Indeed, it may be advantageous to send messages on detours to
improve scheduling flexibility [415].

2.5.1.3 The LogP Model

A variant of the point-to-point model is the LogP model [128]. This model as-
sumes constant size messages and has parameters L (latency), o (overhead), g
(gap), and P (processors). Compared to the point-to-point model, we have L = α
and P = p. The overhead o ≤ L is the local processing time needed to send or
receive a message. The gap g (o ≤ g ≤ L) is the time between consecutive mes-
sage transmissions. Differentiating between latency, overhead, and gap allows
a detailed analysis of the behavior of asynchronous algorithms. We prefer the
point-to-point model here because it has one parameter less but nevertheless better
grasps the important difference between short and long messages. Consequently,
there is also a generalization of LogP that has an additional parameter G for mod-
eling message lengths – LogGP [15].

2.5.2 Communication-Efficient Algorithms

An implicit assumption of the point-to-point model, LogP (and the BSP model in
Section 2.5.3) is that the network can be arbitrarily scaled without affecting la-
tency and communication bandwidth for point-to-point messages. Unfortunately,
this assumption is overly optimistic in practice. For example, it can be shown that
a 2D layout of a network supporting the required bandwidth on a chip requires
area Ω

�
p2
�

[459]. Thus, communication bandwidth is the limiting factor for large
machines [19, 83]. In Section 2.5.4 we address this by explicitly modeling the
network. However, this ties algorithm design to the specific network architecture
at hand and thus makes algorithms more complicated and less portable. A more
attractive approach is to stick to the point-to-point model but to have a closer look
at the relationship between local work and communication costs. We say that
an algorithm is communication efficient if its communication cost is sublinear in

Draf
t74 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Figure 2.19: Domain decomposition for an 18× 18 array of elements on 9 PEs
(color coded). Left: using a one-dimensional logical topology. Right: using a
3× 3 two-dimensional topology. The circles indicate boundary nodes that need
to be exchanged in computations where an array entry depends on its neighbors.
One can see that the two-dimensional approach is more scalable and more com-
munication efficient.

the local work [412]. In particular, the bottleneck communication volume is im-
portant, i.e., the maximum amount of data that some PE has to communicate. A
simple but typical example of a communication-efficient algorithm is illustrated
in Figure 2.19 where averaging adjacent entries of an array only requires few ar-
ray elements to be communicated. Nevertheless, there has been surprisingly little
work on communication-efficient algorithms, and therefore they have become a
major theme in our research [244, 414, 409, 245, 192, 247, 248, 72]. An impor-
tant exception is the work on communication avoiding algorithms, e.g., [439, 44].
These results optimize nested loops with a predictable and regular access pattern.
This approach can be traced to a classical parallel algorithm for n×n matrix mul-
tiplication [136]. The idea is to partition the space of n3 multiply-add operations
into p cubes. This leads to an algorithm that requires bottleneck communication
volume O

�
n2/p2/3

�
in contrast to volume O

�
n2/p1/2

�
required by methods that

only partition the matrices. Note that this approach leads to algorithms that require
space superlinear in the input size.

Communication efficiency can be analyzed in the context of any of the distributed-
memory models discussed in this section.

2.5.3 Bulk Synchronous Parallel (BSP, BSP∗, BSP+, CGM) Models

So far we have discussed asynchronous models based on point-to-point commu-
nication. These are highly flexible and can be used to analyze a wide range of

Draf
t2.5. DISTRIBUTED MODELS 75

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

w

L
+

g
h

S
u

p
er

st
ep

Figure 2.20: A superstep in the BSP model for p = 3 PEs. Parameter h is the
maximum input or output buffer size produced by the superstep. For basic BSP
this is measured in machine words; for BSP∗ and BSP+ the unit is a packet of size
B.

parallel algorithms. However, they are rather low-level. Everything has to be bro-
ken down into individual message transfers. In particular, analyzing synchroniza-
tion and queuing delays can be quite complicated. The bulk synchronous parallel
(BSP) model [463] addresses this issue by grouping many message exchanges
into batches that are synchronized together. During a superstep, PEs can do in-
dependent local work and they can add arbitrary point-to-point messages to the
message batch for that superstep. After the superstep, the messages in the batch
are delivered and the PEs are globally synchronized. Let w denote the maximum
amount of work done by any PE during a superstep, let h denote the maximum
number of machine words sent or received by a PE in that batch. Then the time
for the superstep in the BSP model is w+L+ hg. The parameter L is called the
latency for the superstep and g is called the gap. The problem of executing such a
communication is also called an h-relation.

Comparing this to our point-to-point model, one is tempted to assume L ≈ α
and g ≈ β . However, this is far too optimistic when messages are short. Rather,
several interpretations are possible depending on the actual message exchange
pattern or how the data delivery for a superstep is implemented. One could set
L ≈ α log p to account for the fact that a barrier synchronization is performed (see
also Section 19.1) and g ≈ α conservatively assuming that each machine word is
delivered as an individual message. This will be far away from the truth when

Draf
t76 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

messages are actually long.18 One could also set L ≈ α p and g ≈ β . This is
a good approximation if h ≫ p or if each PE communicates with all (or most)
other PEs. Otherwise, it is far too pessimistic. One could also implement the
data exchange using the indirect all-to-all algorithm from Section 19.7.1. Then
one gets L = O(α log p) and g = O(β log p). A compromise could be to use a
constant number of indirections as it is already used in high-performance sorting
algorithms [39]. From this discussion we conclude that the BSP model can be
rather inaccurate and that it is unclear how to set the parameters to get a reasonable
approximation of reality.

Exercise 19 Implement several ways to support a BSP superstep using a point-to-
point system like MPI. Compare their performance for simple benchmarks. This
is a good project for a course where each student contributes one superstep im-
plementation or one benchmark.

Bäumker and Meyer auf der Heide [52] made a similar observation and pro-
pose to slightly extend the BSP model. The BSP∗ model replaces machine words
in the definition of h by blocks (or packets) of size B. The parameter B is cho-
sen in such a way that sending messages of this size in the ping-pong benchmark
achieves near-maximum bandwidth.19 Using the terminology of the point-to-point
model, this means B = Θ(α/β). Let Mi denote the set of messages sent or re-
ceived by PE i in a BSP∗ superstep. Then redefine h to be maxi ∑m∈Mi⌈|m|/B⌉.
The gap g now defines the gap between sending packets of size B. The cost for a
superstep in the BSP∗ model is then again w+L+hg.20 BSP∗ is realistic insofar
as an h-relation can be delivered in time O(α log p+βBh) in the point-to-point
model and on some concrete interconnection networks, e.g., hypercubes. .

*Exercise 20 Prove the proposition by outlining an algorithm for achieving this.
Hint: use existing work on routing in hypercubes [288].

Another problem of BSP (or BSP∗) is that it needs time Ω(L log p) for simple
collective operations like broadcast and reduction. Since L = Ω(α log p) in or-

18This would be the right interpretation of BSP on systems where Open Problem 10 is solved.
19Bäumker and Meyer auf der Heide [52] formulate this slightly differently “The parameter B

is [. . .] the size the messages must have in order to fully exploit the bandwidth of the router.”
However, taking this literally would lead to huge values of B in particular when the system software
uses throughput optimizing protocols for very large messages. Indeed, in their experiments, they
seem to use B closer to our interpretation.

20Bäumker et al. use w+max(L,gh). Disregarding constant factors, our definition is equivalent
and sticks closer to the original BSP model.

Draf
t2.5. DISTRIBUTED MODELS 77

der to support global barrier synchronization, we get time Ω
�
α log2 p

�
for these

operations. A possible further extension of BSP∗ is therefore to allow not only
point-to-point messages but also broadcast, (all-)reduction, and prefix sums of
size h without changing the definition of the cost of a superstep. This can be done
without further increasing the time for a superstep. This has already been pro-
posed in an early paper [236] and was (partially) implemented in the PUB library
[81] from Paderborn University and in Apache Hama21. We will call this model
BSP+.

Open Problem 11 (Validating and benchmarking the BSP model) Our argu-
ments above are based on the assumption that the point-to-point model is close
to reality. However, it would be much better to thoroughly compare the models
experimentally. Is BSP∗/BSP+ indeed closer to reality? One should try different
applications and benchmark kernels. What are the right values for the parameters
for different implementations of BSP and for different machines? Which imple-
mentations of message exchange work best for which applications? Can those be
selected adaptively?

Open Problem 12 (Exploring the BSP∗ and BSP+ models) So far, few algo-
rithms have been designed or analyzed for the BSP∗ or BSP+ model. Assuming
these models are more realistic than plain BSP, how does this affect the landscape
of algorithms for BSP-like models? Are there new algorithms that now work bet-
ter? Does that transfer into practice? Are tradeoffs between local work, commu-
nication volume, and latency changing? It could happen that a spectrum of BSP
algorithms with different such tradeoffs collapses into a smaller set of (possibly
simpler) BSP∗ or BSP+ algorithms.

We can also consider specializations of the BSP model. The coarse-grained
multicomputer (CGM) [135] model assumes that an input of size n is evenly dis-
tributed over all PEs and that h = n/p in every superstep, i.e., all the data is
always communicated. This has the advantage that for sufficiently large n, the
latency term is dwarfed by the term gh = gn/p and that, essentially, we only need
to count supersteps to determine the communication cost. Note that this goes
in the opposite direction of the communication-efficient algorithms discussed in
Section 2.5.1 and thus may not lead to scalable algorithms in practiceDS. Still, the
simplicity of the CGM model has attracted a significant number of publications
using it [133, 134].

21hama.apache.org/hama_bsp_tutorial.html, accessed Mar 6, 2023.

Draf
t78 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.5.4 Networks with Known Structure

When you build a distributed-memory computer, you are more or less free to
choose the structure of its interconnection network. Of course, there is a cost-
performance tradeoff. Consequently, there has been a lot of work on networks
with good tradeoffs and on algorithms that exploit these structures. Moreover, in
the early days of parallel computers, there was little support for routing: messages
could only be exchanged between neighbors in the network. Even with routing
support, fitting your algorithm to the network structure can improve communica-
tion performance. In particular, this can avoid contention, i.e., the situation that
several messages compete for the same resource (e.g., a router node or network
link). Tuning an algorithm for a particular network is nowadays done rarely. How-
ever, some of the network structures are so elegant that algorithms for them can be
useful, even on different networks. This is also a reason for knowing some of the
networks presented below even if you are unlikely to face them on a real machine
– often the best known algorithms make use of a logical network that is then em-
bedded into the physical network (in the case of the fully-connected model from
Section 2.5.1, any mapping will do).

The cost for a message exchange can adapt the point-to-point model from
Section 2.5.1 – A PE can send a message of size ℓ to any neighboring PE in time
α +βℓ. When the latency of a hardware router dwarfs the software setup latency,
we can generalize this to allow arbitrary communication partners provided that the
routing algorithm can find contention-free paths. Note that the latter constraint
can be difficult to check since one needs detailed knowledge about the routing
algorithm.

Open Problem 13 (Networks reconsidered) Most work on network-specific al-
gorithms and routing is more than 25 years old (at least from the algorithms com-
munity). Are all these problems really solved? Are there new opportunities or new
problems that might warrant reconsidering some of these questions? Our observa-
tion is that at least routing algorithms should still be interesting since we can now
consider much more complex computations in the network and because networks
used in practice show massive performance problems (e.g., [36, Appendix B.1]).

Several properties are important for good interconnection networks of parallel
machines. Figure 2.21 illustrates these parameters.

Simplicity. A simple mathematical structure helps to design algorithm for a net-
work and often also simplifies building the network.

Draf
t2.5. DISTRIBUTED MODELS 79

d
iam

eter

max. degree 4

area O(p)2
√

p−2

2p−2
√

p edges

bisection
bandw

idth √
p

Figure 2.21: Illustration of the parameters maximum degree, number of edges,
diameter, bisection bandwidth, and 2D layout cost (area) for a mesh network.

Node degrees. To keep costs low, one would like to have maximum node degrees
bounded by a (small) constant. For simplicity, it is also desirable to have uniform
node degrees.

Number of edges. Another cost criterion is to have a low number of connections,
ideally, m = O(n).

Diameter. The network graph should have a low diameter in order to allow fast
coordination of the PEs. Typically one would like to achieve O(log p). Lower
diameter would not help in presence of single-ported communication and it would
increase node degrees and costs.

Bisection bandwidth. This is the minimum number of links one has to cut in
order to partition the network into two halves with at least ⌊p/2⌋ nodes each. High
bisection bandwidth means that we can support high bandwidth communication
for arbitrary communication patterns. Bandwidth Ω(p) (i.e., linear) is needed in
order to fully support the point-to-point model from Section 2.5.1. Many networks
actually do not achieve this bandwidth. Computing the bisection bandwidth is NP-
hard in general [198]. An upper bound is easy to establish by evaluating the cut
size for a particular bisection. A lower bound can be given by embedding the

Draf
t80 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

complete (clique) graph into the network [288, Theorem 1.21].

Layout costs. One would like to be able to put the components of the network
into 3D space (or even better on a planar chip) such that connections are short and
have fixed width. Obviously, there is a fundamental physical tradeoff here. We
discuss this tradeoff in more detail in Section 2.8.2.

We now describe a few networks that are interesting for parallel computers,
starting with simple cheap ones progressing to more and more powerful ones.
Table 2.5 summarizes their properties.

**Exercise 21 Show the values for area, volume, and longest edge for d-D meshes
and tori in Table 2.5. Hint: use induction on d.

2.5.4.1 Paths and Rings

Figure 2.22: A path and a ring network with 8 PEs.

Paths and rings are unbeatable in cost and simplicity. A path has a maximum
degree of two and one achieves constant-length wires by just putting PEs next to
each other. Figure 2.22 shows that one can also lay out rings with constant wire
length. Compared to paths, the one additional edge pays off by about halving the
diameter and improving simplicity – we now have uniform degree two. It now
also suffices to have unidirectional links. Ring and path networks are therefore
popular for designing small networks. For larger configurations, their small bi-
section bandwidth makes them less attractive. Many algorithms naturally work
on a path or ring. For example, by assigning slices of an array to each node, com-
putations where only neighboring cells of the array interact can be implemented
using communications between neighbors only.

2.5.4.2 Trees

Compared to paths, (balanced binary) trees are attractive because, by increasing
the maximum degree by one, we can reduce the diameter from linear to logarith-
mic. Trees naturally lend themselves to implementing divide-and-conquer algo-
rithms. Since bisection bandwidth does not go up, trees are not a good general-

Draf
t2.5. DISTRIBUTED MODELS 81

Ta
bl

e
2.

5:
K

ey
pr

op
er

tie
s

of
ne

tw
or

ks
co

m
m

on
ly

us
ed

in
pa

ra
lle

lc
om

pu
tin

g
fo

r
co

nn
ec

tin
g

p
PE

s.
A

bb
re

vi
at

io
ns

:
“d

eg
re

e”
is

th
e

m
ax

im
um

de
gr

ee
,“

bi
se

ct
io

n”
is

th
e

bi
se

ct
io

n
ba

nd
w

id
th

,“
le

ng
th

”
is

th
e

m
ax

im
um

w
ir

e
le

ng
th

in
a

3D
la

yo
ut

,“
ar

ea
/v

ol
um

e”
is

th
e

la
yo

ut
co

m
pl

ex
ity

in
2D

/3
D

.T
he

co
lu

m
ns

“b
is

ec
tio

n”
to

”v
ol

um
e”

ha
ve

an
im

pl
ic

it
O
(·)

.T
he

co
lu

m
ns

“d
ia

m
et

er
”

an
d

“#
ed

ge
s”

ha
ve

an
im

pl
ic

it
·(1

+
o(

1)
).

na
m

e
di

am
et

er
de

gr
ee

#e
dg

es
bi

se
ct

io
n

le
ng

th
ar

ea
vo

lu
m

e
se

ct
io

n
pa

th
p

2
p

1
1

p
p

2.
5.

4.
1

ri
ng

p/
2

2
p

1
1

p
p

2.
5.

4.
1

bi
na

ry
tr

ee
lo

g
p

3
p

1
p1/

3
p

p
2.

5.
4.

2
r-

ar
y

tr
ee

lo
g r

p
r+

1
p

1
p1/

3
p

p
2.

5.
4.

2
st

ar
1

p
−

1
p

p
p1/

3
p

p
2.

5.
4.

3
m

es
h

2p
1/

2
4

2p
p1/

2
1

p
p

2.
5.

4.
4

to
ru

s
p1/

2
4

2p
p1/

2
1

p
p

2.
5.

4.
4

3D
m

es
h

3p
1/

3
6

3p
p2/

3
1

p4/
3

p
2.

5.
4.

5
3D

to
ru

s
3p

1/
3 /

2
6

3p
p2/

3
1

p4/
3

p
2.

5.
4.

5
d-

D
m

es
h

d
p1/

d
2d

d
p

p1−
1/

d
p(

1−
3/

d)
/

2
p2−

2/
d

p(
3−

3/
d)
/

2
2.

5.
4.

6
d-

D
to

ru
s

d
p1/

d
/2

2d
d

p
p1−

1/
d

p(
1−

3/
d)
/

2
p2−

2/
d

p(
3−

3/
d)
/

2
2.

5.
4.

6
hy

pe
rc

ub
e

lo
g

p
lo

g
p

p
lo

g(
p)
/2

p
p1/

2
p2

p3/
2

2.
5.

4.
7

C
C

C
2

lo
g

p
3

3p
/2

p/
lo

g
p

p1/
2

p2
p3/

2
2.

5.
4.

8
bu

tte
rfl

y
lo

g
p

4
2p

p/
lo

g
p

p1/
2

p2
p3/

2
2.

5.
4.

8
m

ul
tis

ta
ge

bu
tte

rfl
y

lo
g

p
4

2p
lo

g
p

p
p1/

2
p2

p3/
2

2.
5.

4.
8

fa
tt

re
e

O
(l

og
p)

fle
xi

bl
e

O
(p

lo
g

p)
p

p1/
2

p2
p3/

2
2.

5.
4.

10
ex

pa
nd

er
gr

ap
h

O
(l

og
p)

O
(1
)

O
(p
)

p
p1/

2
p2

p3/
2

2.
5.

4.
11

Dra
ft

82 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Figure 2.23: A 15-node complete binary tree network with depth 3.

purpose network for large parallel computers (but stay tuned for fat trees intro-
duced in Section 2.5.4.10). However, tree networks have been combined with
other networks to give hardware support for very low-latency collective commu-
nication operations. This is one example of why it can make sense when parallel
computers have several different networks.

2.5.4.3 Stars

An extreme tree is a single central node with p − 1 other nodes directly con-
nected to it. We mention this as a kind of “anti-pattern” for parallel computing.
Many simple parallel programs use this as a logical structure, for example, the
master-worker load balancing schema (see [410, Section 14.3]). Such programs
are simple but with obvious limitations for scalability. More surprisingly, the star
structure is hardwired into several theoretical models for distributed computing
(see also Open Problem 21 and Section 2.5.8).

2.5.4.4 Meshes and Tori

Arranging p nodes in a rectangular grid with side lengths Θ(
√

p) leads to a net-
work with diameter and bisection bandwidth Θ(

√
p) that can be laid out with lin-

ear area in the plane, with constant wire lengths and ≈ 2n edges; see Figure 2.24.
Using an analogous trick as with the ring network, this also transfers to torus net-
works where nodes on one border of the rectangle are connected with the node
on the opposite side. Usually one uses links in four orthogonal directions, lead-
ing to a maximum degree of 4. Sometimes also diagonal connections are present,
resulting in a maximum degree of 8. Unidirectional links make sense with torus
networks. Many algorithms have been designed specifically for mesh and torus
networks. For example, two-dimensional arrays can easily be mapped to a mesh
by cutting it into rectangular pieces (domain decomposition). Figure 2.19 gives a
simple example. An interesting nontrivial example is Cannon’s algorithm for par-

Draf
t2.5. DISTRIBUTED MODELS 83

allel matrix multiplication [103] where square tiles of a matrix are rotated through
a torus network.

Exercise 22 Design triangular and hexagonal variants of mesh networks. Ana-
lyze their properties and discuss advantages and disadvantages compared to the
more common meshes we consider here.22

Figure 2.24: An 8×8 mesh (left) and torus (right) network.

2.5.4.5 3D Meshes and Tori

The step from lines or rings to 2D meshes or tori can be extended to 3 dimensions.
By going to maximum degree 6 and ≈ 3n edges, we can reduce the diameter to
O(p1/3) and increase bisection bandwidth to p2/3 while keeping constant wire
length if we can arrange our PEs in 3 dimensions. Thus, this architecture looks
very natural for obtaining a massively scalable network for large parallel comput-
ers.23 With routing done by hardware, the latency might not be worse than for the
logarithmic diameter networks discussed below. The same applies to the actual
bisection bandwidth – for a 3D mesh, we can afford much higher-bandwidth phys-
ical connections than for the long connections in the networks below. Once more,
the application to domain decomposition is important. In particular, 3D meshes

22An interesting application of triangular meshes is in some state-of-the-art climate and weather
models. [205].

23With a caveat with respect to cooling – see Section 2.8.2.

Draf
t84 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

are promising for simulating physical objects where 3 dimensions are what we
are facing most of the time. It should be noted though, that the graph used for
the computations may have a different shape than the interconnection network so
that some overheads for embedding the computational structure into the physical
network might ensue.

2.5.4.6 Higher Dimensional Meshes and Tori

The transition 1D→2D→3D can be logically continued. For constant dimension
d, we obtain diameter O(p1/d) and bisection bandwidth pd/(d−1). However, since
we are running out of (usable) physical dimensions, wire lengths and layout costs
go up. Nevertheless, such networks have been used for supercomputers because
with their fixed maximum degree, they can be scaled to different machine sizes
without fundamentally changing the network topology. For example, IBM Blue-
Gene/Q used a 5D torus.

2.5.4.7 Hypercubes

When p = 2d is a power of two, we can lead the above process to its logical
conclusion by considering a mesh with side length two and d dimensions – a d-
dimensional hypercube. We interpret PE numbers from 0..p− 1 for p = 2d as
d-digit binary vectors. Then, PEs i and j are connected if and only if i⊕ j = 2k

for some k in 0..d−1. We say that i and j are connected along dimension k of the
hypercube. See Figure 2.25 for an example. We obtain logarithmic diameter and
linear bisection bandwidth at the considerable cost of logarithmic node degrees
and n logn edges. Hypercubes are sometimes used for building actual computers.
An influential historical example was the first Connection Machines [237] which

1 10 1 11

0 10 0 11

1 011 00

0 00 0 010 0

1 11

10

0

0

1

Figure 2.25: 0- to 4-dimensional hypercube networks.

Draf
t2.5. DISTRIBUTED MODELS 85

used a 16-dimensional hypercube.24

Many divide-and-conquer algorithms can be mapped very naturally to a hy-
percube. For example, several of the collective-communication problems have
very simple, optimal solutions on hypercubes (see [410, Chapter 13]).

2.5.4.8 Constant Degree Networks with Logarithmic Diameter and
Bisection Bandwidth Θ(p/ log p)

3

2

0

1

i

k

0 1 2 7653 4

Figure 2.26: 3-dimensional cube-connected cycle (left) and butterfly (right).

A hypercube can be transformed into a cube-connected cycle network (CCC)
with node degree 3 and logarithmic diameter by replacing the nodes of the hy-
percube by rings of size d. Node (i,k) – the k-th node on ring i – is connected
with the k-th node in ring j if i⊕ j = 2k. Figure 2.26 (left) gives an example. The
resulting bisection bandwidth is O(p/ log p). The butterfly network has similar
properties. Here PE (i,k) is connected with PEs (i⊕ 2k,k+ 1) and (i,k+ 1) for
0 ≤ k < d and 0 ≤ i < 2d . Figure 2.26 (right) gives an example.

Many other constructions lead to the same asymptotic results for degree, di-
ameter, and bisection bandwidth, e.g., shuffle-exchange, de Bruijn, and several
other so-called Cayley graphs, which establish an interesting connection between
networks and group theory [235].

24The HAWK supercomputer at HLRS in Stuttgart uses a 9-dimensional hypercube network.
Each hypercube node is a switch. 16 compute nodes are connected to each of these switches.
Hence, we have a hybrid between a hypercube and a multistage network; see Section 2.5.4.9 and
hlrs.de/en/systems/hpe-apollo-9000-hawk/

Draf
t86 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.5.4.9 Multistage Networks

Above, we make the oversimplification to identify nodes of the interconnec-
tion network and processors that run the parallel application. However, usually
(multicore-)processors are just attached to nodes of the interconnection network
(switches). These interface with the processors and have the task of routing mes-
sages through the network to other switches. In particular, some switches may not
have processors attached to them. A typical such architecture is a multistage net-
work where switches are arranged in layers. Processors form the bottom layer 0
and are connected to switches on layer 1. Switches at layer i connect to nodes on
layers i−1 and i+1 only. A common construction principle is that the switches
have k network links for some parameter k and that a switch can pass data packets
between any pair of links. When p ≤ k, all PEs are simply attached to a single
switch. Otherwise, k′ PEs are attached to each switch and its remaining k − k′

links are used to connect to the next layer 2. This is done in such a way that there
is (at least) one path between each pair of PEs. Moreover, the resulting bisection
bandwidth should be large while using a “reasonable” number of switches. There
are many concrete construction principles for multistage networks. Usually, the
programmer does not want to care about them but the assumption is that a good
routing algorithm is implemented that can handle arbitrary communication pat-
terns efficiently. The butterfly network shown in Figure 2.26 shows a multistage
network with k = 4 and k′ = 2. The fat-tree network in Figure 2.27 has k = 6.

2.5.4.10 Fat Trees

A frequently used family of multistage networks has the following basic structure:
For a k-layer network, consider only layers 0..i of the network for 0 < i < k. Then
the network breaks into several connected components. View all layer-i switches
in the same component as a single virtual switch at level i. In a fat tree [289] the
virtual switches form a tree. (See Figure 2.27 for an example.) A message from
PE i to PE j is routed first up to the lowest common ancestor of PEs i and j in
the fat tree and then down to PE j. Note that when routing in the actual physical
network, there may be many concrete paths from i to j but all of them map to the
same path in the fat tree. Typically, the higher up we are in the fat tree, the more
physical links correspond to a logical link in the fat tree. Thus, a fat tree can be
seen as an abstraction of a multistage network where link bandwidth increases as
we go up the layers. If the bandwidth of the fat tree’s (virtual) links grows linearly
with the number of PEs in the subtrees they connect, then we will have linear

Draf
t2.5. DISTRIBUTED MODELS 87

0
1

2

3
layer

Figure 2.27: A 3-layer fat tree network with 48 leaves based on 6-way switches.
The switches at layers 1 and 2 use 4 downward edges and 2 upward ones. Light
green areas encompassing switches indicate virtual switches.

bisection bandwidth. In large computer systems, linear bisection bandwidth may
be too expensive, however. This is why we view the concept of communication-
efficient algorithms introduced in Section 2.5.2 as so important. Fat trees often
have higher per-node communication bandwidth for local communication within
subtrees and are hence well-modeled by the multilevel models discussed in Sec-
tion 2.5.5.

2.5.4.11 Expander Graphs

So far, our examples for networks with linear bisection bandwidth (hypercube,
multistage networks) needed Ω(n logn) edges. Interestingly, there are also net-
works where a linear number of edges suffices. (Edge) expander graphs have the
property that for any cut C ⊆V with |C|≤ |V |/2,

|{(u,v) ∈ E : u ∈C,v ∈V \C}|≥ h · |C|

for some constant h. Since h is fairly small for known deterministic construc-
tions of expanders [239, 17, 278], in practice one would use randomized con-
structions. For example, consider the following 2d-regular random cycle graph:
Gd(n) :=(1..n,E1∪ · · ·∪Ed) where Ei builds the cycle (πi(1), . . . ,πi(n),πi(1)) for
a random permutation πi (π1 can also be the identity mapping, see Figure 2.28 for
an example). For d ≥ 2, such a graph is an expander graph with high probability.25

Open Problem 14 (Expander graphs in practice) Although expander graphs
are convincingly proposed as practical interconnection networks for real-world
applications (e.g., [11, 223]), we are not aware of actual implementations. One

25If one wants a 2d +1-regular graph one can use d cycles and one random matching.

Draf
t88 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Figure 2.28: An instance of the graph family G2(16).

reason may be that the number of edges is not a good predictor of the actual phys-
ical cost of building a network. In particular, fat trees and related networks can be
built from standardized components that are connected by regular patterns with
mostly short connections. Hence, more work on practical expander graphs seems
interesting. One could begin by empirically studying the expansion properties of
different variants of random expander graphs. For example, the above random
cycle graphs might have better expansion for small subsets than the graphs one
finds in theory where edge endpoints are chosen randomly from 2 · n · d possible
endpoints in a d-regular graph [482].26 Subsequently, one could consider actual
construction costs and compare them with other approaches like fat trees. Even-
tually, one could evaluate the impact on applications.

2.5.5 Hierarchical Networks and Combination with Shared Memory

We are facing the dilemma that models assuming a fully-connected network are
too optimistic with respect to the bisection bandwidth but that tuning for one par-
ticular network topology is complicated and not portable. A compromise is to
exploit that in all the above topologies it makes sense to distinguish between local
and global communication on two or more levels of a hierarchy. This is perhaps
most visible in a fat tree topology (see Section 2.5.4.10). PEs in the same subtree
can communicate with higher bandwidth per PE and also with slightly smaller la-

26The more well known Erdős–Rényi random graphs are not expanders for linear m since they
contain some small connected components.

Draf
t2.5. DISTRIBUTED MODELS 89

tency. On mesh and torus networks (Sections 2.5.4.1–2.5.4.6) we can artificially
impose such a tree-hierarchy by recursively bisecting the network (this works best
when p is a power of two). This also works for hypercubes (Section 2.5.4.7) where
a subcube is such a natural local set of PEs. Similarly, CCCs or butterflies can be
viewed as variants of hypercubes where groups of PEs represent one node of a hy-
percube (Section 2.5.4.8). Only expander graphs (Section 2.5.4.11) – on purpose
– have very little structure. Still, our permutation-based construction provides a
known ring structure with some locality between PEs with nearby PE numbers.

A hierarchical network can also model the important fact that modern
distributed-memory machines consist of nodes that are shared-memory machines.
Thus, the lower levels of our hierarchy correspond to PEs on the same network
node that can communicate very fast using their shared memory. Alternatively,
we can follow a hybrid approach where we use a shared-memory model on the
nodes and a distributed-memory model for the overall machine.

Hierarchical models of distributed memory are quite similar to the parallel
memory hierarchies discussed in Section 2.4.6. The main difference is that PEs
on level i do not interact by accessing memory at level i+ 1 but rather commu-
nicate at level i. Bilardi et al. [70] give a generalization of the BSP model to
multiple levels of memory hierarchy. The processing in memory model (PIM)
[264] combines a conventional shared-memory machine with additional process-
ing cores attached to a local piece of memory, highlighting an interesting option
for integrating memory and processing.

2.5.6 Arbitrary Networks

The networks discussed above are highly structured and explicitly designed to al-
low simple and efficient parallel programs. However, computer networks might
have a very different structure perhaps based on the physical locations of their
nodes and the available connections between them. In that case, one can con-
sider algorithms that organize these networks, e.g., to establish spanning trees in
them, to elect a leader, etc. [370, 32, 390]. These algorithms are often called
distributed graph algorithms or more generally, distributed algorithms. How-
ever, these should not be confused with parallel (graph) algorithms running on
distributed-memory machines. In the latter case, the nodes and edges of the graph
are distributed over the network. Usually, the graph is much larger than the num-
ber of nodes in the network. In the former case, the graph to be processed and the
network are the same thing. Initially, each node only knows its neighbors. Nodes

Draf
t90 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

i e

h

c

g fd a

b

Figure 2.29: Illustration of a step in a distributed graph algorithm in the CON-
GEST model. The nodes are labeled with random letters. In a single step, these
labels are sent to neighboring nodes. With this information, nodes can decide lo-
cally whether they have a smaller label than all their neighbors. These are colored
in orange. The orange nodes form an independent set of the graph. By removing
these nodes and their neighbors from the graph and iterating these two steps, one
can compute a maximal independent set of the input graph in a logarithmic num-
ber of rounds with high probability [297].

have a unique ID but they are not numbered consecutively 1..n. Also, the cost
models can be different. In the theory of distributed algorithms, the following two
models called LOCAL and CONGEST are frequently used. Both of them count
globally synchronized rounds of communication and assume that each node can
communicate with all of its neighbors within a round. In the LOCAL model, the
message length is unbounded whereas in the CONGEST model, only O(logn)
bits can be exchanged. Figure 2.29 gives an example.

Open Problem 15 (Theory versus practice for distributed algorithms)
Distributed algorithms in the LOCAL and CONGEST models have been inten-
sively studied in the algorithm theory community. They also make a lot of sense
for proving lower bounds. However, many distributed algorithms have never been
implemented. How do these algorithms perform in practice? Can they be adapted
to more realistic cost models, i.e., where only a constant number of messages can
be exchanged in constant time and where nodes work asynchronously? Can the
techniques used for distributed graph algorithms also be adapted to yield efficient
parallel algorithms?

2.5.7 Cellular Automata

A cellular automaton (CA) consists of identical finite automata (cells) arranged
in a regular d-dimensional grid; see Figure 2.30. All cells operate synchronously.

Draf
t2.5. DISTRIBUTED MODELS 91

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

...

...

...

...

...

...

...

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2.30: A 2-dimensional cellular automaton with von Neumann neighbor-
hood, i.e., the next state of each finite automaton depends on its previous state
(blue square) and the previous states of its four immediate neighbors.

Bryan Burgers

Figure 2.31: Gosper’s Glider Gun that produces a stream of gliders in the game
of life cellular automaton. A cell in the game of life is dead or alive. We consider
3×3 “Morton” neighborhoods. A living cell stays alive if and only if it has 2 or
3 living neighbors. A dead cell becomes alive if it has exactly 3 living neighbors.

Their state in the next step is a function of their current state and the state of a
fixed set of neighboring cells. An input of size n is presented as the initial state of
a set of n contiguous cells. All other cells are initially in a ground state. The grid
itself is potentially infinite. Cellular automata are popular as a simple model for
complex systems. For example, Conway’s Game of Life is a staple of recreational
mathematics [64]; see also Figure 2.31. Indeed, CAs represent the arguably most
simple universal model of computation. Not only the game of life but even some
very simple one-dimensional automata with one bit of state are already Turing
complete [125]. This is surprising as there are only 256 ways to specify the transi-
tion function of such an automaton. All of these have been investigated intensively
[481]. Cellular automata have been used as a basis for distributed algorithm devel-

Draf
t92 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

opment [469] to study fundamental problems such as self-replication [99], leader
election [53, 354], or synchronization [395, 460]. Another advantage is that CAs
are physically realizable in the sense of Section 2.8.2, i.e., with respect to layout
area/volume and signal propagation delays. The somewhat unrealistic assumption
of synchronous operation can be lifted by emulating a CA on a machine that only
needs local synchronization [347]

Nevertheless, CAs are rarely used for actual software development because
they operate on a very low level – the PEs (cells) do not know about their index
and even implementing a counter requires a joint effort of multiple cells.

Exercise 23 Design a 1D cellular automaton that counts the number of cells
whose initial state is 1. At the end of the computation, the leftmost cells of the
automaton shall contain a unary representation of the desired output. For ex-
ample [0010000100110001]→ [1111100000000000]. Repeat the exercise with a
binary output represented in the leftmost cells.

One could also consider a model CA+ where cells are RAMs restricted to
a polylogarithmic amount of memory. This is very close to distributed-memory
machines with mesh networks, however with an additional restriction to severely
limited local memory. One would probably also drop the implicit assumption that
α ≫ β because such a fine-grained model only makes sense if communication
has very low latency.

2.5.8 Communication Complexity

Research in communication complexity is about establishing lower and upper
bounds on the number of bits that need to be communicated in order to solve
certain problems [282]. However, in contrast to the communication-efficient al-
gorithms discussed in Section 2.5.2, communication complexity research has so
far concentrated on networks with very simple structure. Even just two nodes are
already a challenging setting. Multiparty communication has looked essentially at
star networks, where there is a centralized coordinator [153] or blackboard [282]
used for information exchange.

Open Problem 16 (Multiparty communication complexity)
Study lower bounds of fundamental problems in communication complexity for
the general case that we have a fully connected network of p nodes and that we
are interested in the bottleneck communication complexity as in Section 2.5.2.

Draf
t2.6. MAPREDUCE AND OTHER HIGH-LEVEL MODELS 93

For example, in [412] we show an upper bound of about log p bits per element to
solve the classical duplicate detection problem. We conjecture that this is tight.
However, no formal proof is known yet.

2.6 MapReduce and Other High-Level Models

The above models for parallel processing require the explicit coordination of p
PEs. In nontrivial cases, complex load-balancing strategies are required and in
large practical configurations, the computations have to be done in a fault-tolerant
manner. Also, we have already seen that realistic modeling of the cost of these
computations is complicated. Hence, we might want to look at much more ab-
stract models that leave parallelization, load balancing, and fault tolerance to a
framework for big data processing.

D =
[

c∈C

ρ(c)

C = {(k,X) : k ∈ K∧
X = {x : (k,x) ∈ B} ̸= /0}

B =
[

a∈A

µ(a)⊆ K ×V

A ⊆ I

map

collect

reduce

...

Figure 2.32: Computations specified by a MapReduce step.

A simple and well-known approach is MapReduce [132]. MapReduce steps
get a multiset A ⊆ I of elements from an input data type A and map A to a multi-
set of key-value pairs B =

S
a∈A µ(a) ⊆ K ×V for a user-defined mapping func-

tion µ . Next, values with the same key are collected together, i.e., the system
computes the set C = {(k,X) : k ∈ K ∧X = {x : (k,x) ∈ B} ̸= /0}. Finally, a user-
defined reduction function ρ is applied to the elements of C to obtain an output
multiset D.27 Figure 2.32 summarizes the resulting logical data flow. The user
only needs to specify µ and ρ; the system is taking care of the rest. Chaining

27In most papers, the sets A and D are also defined to be key-value pairs. However, there seems
to be no mathematical necessity for this specialization so we use a more general definition here.

Draf
t94 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

several MapReduce steps with different mapping and reduction operations yields
a wide spectrum of useful applications.

Exercise 24 Define mapping and reduction operations for a MapReduce step that
solves the word-count problem. The input is a multiset of lines of text, each con-
taining a sequence of words separated by spaces. The output is a set of key-value
pairs (w,c) where w is a word and c is the number of time w occurs in the input.

The MapReduce concept has been developed into a theoretical model of “big
data” computations (MRC) [267] that is popular in the algorithm theory commu-
nity. Problems are in MRC if they can be solved using a polylogarithmic number
of MapReduce steps and if a set of (rather loose) additional constraints is fulfilled:
Let n denote the input size and ε > 0 some constant. The time for one invocation
of µ or ρ must be polynomial in n using “substantially” sublinear space, i.e.,
O
�
n1−ε�. The overall space used for B must be “substantially” subquadratic, i.e.,

O(n2−2ε). While MRC has given new impulses to parallel complexity theory, it
opens a new gap between theory and practice. MRC based algorithms that use
the full leeway of the model are unlikely to be efficient in practice. They are not
required to achieve any speedup over the best practical sequential algorithm. They
are also allowed to use near quadratic space so that they may not be able to solve
large instances at all.

However, a slightly more precise analysis can yield a model MRC+ that is
more predictive for efficiency and scalability yet maintains the high level of ab-
straction of MRC. The main change is to not only count MapReduce steps but
also to analyze the communication volume and local work.28 In other words,
rather loose space and time constraint of MRC are changed into obligations for
analysis in MRC+.

More precisely, let w denote the total time needed to evaluate the functions
µ and ρ on all their inputs. Let ŵ denote the maximum time for a single call to
these functions. Let m denote the total number of machine words contained in
the sets A–D. Let m̂ denote the maximum number of machine words produced or
consumed by one call of the functions µ and or ρ . It turns out that, in some sense,
these four parameters fully characterize the difficulty of a MapReduce step:

Theorem 1 ([404]) Assume that the input set A of a MapReduce step is dis-
tributed over the PEs such that each PE stores O(m/p+ m̂) words of it. Then

28Note that there is an analogy here to the CGM and BSP models where the former also only
counts steps.

Draf
t2.6. MAPREDUCE AND OTHER HIGH-LEVEL MODELS 95

PE 1 PEPE 2

memory
local

memory
local

memory
local

bottleneck communication volume

internal work

p

...

network

≤ m̂

≤ m̂

≤ m̂

w

m

≤ ŵ

≤ ŵ

Θ
�

m
p
+ m̂+ log p

�

Θ
�

w
p
+ ŵ+ log p

�

Figure 2.33: Illustration of Theorem 1.

it can be implemented to run on a distributed-memory parallel computer with ex-
pected local work and bottleneck communication volume

Θ
�

w
p
+ ŵ+ log p

�
and Θ

�
m
p
+ m̂+ log p

�
, (2.1)

respectively. These bounds are tight, i.e., there exist inputs where no better bounds
are possible. Moreover, no PE produces more than

O

∑

d∈D

|d|
p

+max
d∈D

|d|
!

= O
�

m
p
+ m̂

�

words of output data. Figure 2.33 illustrates this result.

The pre and postconditions are formulated in such a way that several MapRe-
duce steps can be chained. Theorem 1 “almost” means that a MapReduce step can
be simulated by a constant number of supersteps in the BSP model (see also Sec-
tion 2.5.3). Indeed, the paper [404] shows a slightly weaker upper bound that can
be implemented using two BSP supersteps. To achieve the tight bound, an asyn-
chronous work-stealing algorithm is needed (see also Section 18.3). Therefore
Theorem 1 does not use the BSP model. It also does not use the point-to-point
model from Section 2.5.1 because the implementation employs a general BSP-
like data exchange step which entails several implementation tradeoffs as already
discussed in Section 2.5.3.

Draf
t96 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Open Problem 17 (Rooting MapReduce models in reality.) The results from
Theorem 1 are only the beginning. One should also consider more detailed mod-
els of realistic parallel machines. One would like to have a more explicit treatment
of startup overheads, memory hierarchies (disk versus RAM), and fault tolerance
(see also Section 2.10). One should also analyze the performance of the algo-
rithms actually used in current MapReduce implementations to see what bounds
one gets and whether the algorithms can be improved for better scalability or ro-
bustness.

Exercise 25 Analyze your solution to the word-count problem (Exercise 24) using
the terminology and results of theorem 1. Why does this result have very limited
scalability for real-world inputs? Hint: what about very frequent words? Adapt
the model to enable a specialized (highly local) treatment of associative reduction
operations. How does this change the analysis of the word-count problem?

At the same time the MRC model has gained popularity as a theoretical model,
practitioners have increasingly realized that plain MapReduce alone is not enough
to implement a sufficiently wide range of applications efficiently. Breaking down
an application into MapReduce steps often requires a large number of steps and
thus complicates algorithm design. This is exacerbated by the requirement to
communicate (and possibly move to/from external memory) basically all the in-
volved data in every step. Even the original MapReduce publication [132] already
introduces a more communication-efficient variant with reducers that allow local
reduction of data with the same key, e.g., using a commutative, associative oper-
ator like + or min. More recent big data tools such as Spark [487], Flink [106],
or Thrill [71] adopt the highly abstract basic approach of MapReduce but offer
additional operations and/or data types. For example, the Thrill framework [71]
is based on arrays and offers operations, for mapping, reducing, union, sorting,
merging, concatenation, prefix sums, windows, etc. The MRC+ model introduced
above can be adapted to this approach. For each operation, we analyze its com-
plexity in a realistic model of parallel computation. Similar to the BSP+ model
from Section 2.5.3, we are likely to end up with a small number (one for BSP+)
of categories of operations that are assigned the same cost in the model based on
a small number of involved parameters.

Open Problem 18 (Generalized MapReduce-like models.) The above ap-
proach is just an outline of how to deduce such a model. One should spell it
out for the most popular big data frameworks arriving at a small number of

Draf
t2.7. TAMING THE ZOO OF PARALLEL MODELS 97

Table 2.6: Summary of some main characteristics of parallel machine models
discussed in this chapter. See the text for more details.

name parameters local granularity sync.? Section
shared memory

*R*W-PRAM p – low yes 2.4.1
a*RQW-PRAM p – low no 2.4.2
PEM/PEM+ p, B, M ⋆⋆ medium yes 2.4.6
par-obliv. many ⋆⋆⋆⋆ medium yes 2.4.6

distributed memory
point2point p, α , β ⋆⋆⋆ medium no 2.5.1
networks p, α , β , graph ⋆⋆⋆⋆⋆ low no 2.5.4
LogP p, L, o, g ⋆⋆ low no 2.5.1
LogGP p, L, o, g, G ⋆⋆⋆ medium no 2.5.1
BSP p, L, g ⋆⋆ high yes 2.5.3
BSP∗/BSP+ p, L, g, B ⋆⋆⋆ high yes 2.5.3
CGM p ⋆ high yes 2.5.3
MRC – (⋆) high yes 2.6
MRC+ – (⋆) high yes 2.6

proposals for an abstract model. At the same time, the set of operations supported
by the existing tools might not be the last words. Perhaps the abstract models
help to conceive gaps in the spectrum of available operations. In particular,
one would like to have data access operations that only require communication
for performed queries but not for the accessed data structure. For example,
we might want to implement a distributed full-text index that supports fast and
communication-efficient batched queries [178].

2.7 Taming the Zoo of Parallel Models

In the previous sections, we have seen a large number of models for parallel com-
puting. This is confusing and perhaps one reason for the slow progress of parallel
algorithmics. So let us compare them in order to understand their respective ad-
vantages, to help select the right one for a particular situation, and perhaps to come
to a synthesis. Table 2.6 summarizes some basic properties. Column “parameters”
lists the parameters used for describing the machine.

Column “local” gives a score of how well the model takes locality of com-

Draf
t98 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

expressivity

si
m

p
li

ci
ty

memoryshared
distributed

BSP

BSP*

PEM
aPRAM

MRC

CGM

LogP

MRC+

PRAM

par−obliv.
networks

PEM+

LogGP
point2point

BSP+

Figure 2.34: Simplicity versus expressivity of some models of parallel computing.

putation into account. Basic PRAMs do not model locality at all. MapReduce
also scores low since it basically moves all the data except that there may be some
locality within the mapping operation. CGM is little better but at least allows arbi-
trary operations on all the local data. The other models handle locality fairly well
with a minus point for PEM compared to the distributed-memory models as it re-
quires loading all input data into the cache first. LogP and BSP get a minus point
because they do not handle the spatial locality of messages well. Parallel memory
hierarchies and concrete interconnection networks get plus points for modeling
not just the two categories local and global.

Column “granularity” stands for the granularity of the computations done in
the respective model. This ranges from very fine-grained PRAM computations to
CGM and MRC, where each parallel step implies the communication of all the
data using complex communication patterns. Column “sync.?” indicates whether
the computations proceed in a globally synchronized manner.

It is difficult to derive interesting qualifications such as simplicity, or realism
from these basic properties. For example, while the number of machine param-
eters is certainly correlated with simplicity, we abstain from also displaying pa-
rameters related to the input instance or the analyzed algorithm that are needed
to perform an algorithm analysis in the model. Hence, Table 2.6 is mostly useful
as a way to select relevant features for the application at hand. How relevant is
communication efficiency? How coarse-grained can the computation be, given
constraints on the tolerable latency? Do we want to consider asynchronous algo-
rithms?

Draf
t2.7. TAMING THE ZOO OF PARALLEL MODELS 99

Figure 2.34 gives a more aggregated and more subjective classification of the
models along the dimensions of simplicity and expressivity, i.e., how many as-
pects relevant to realistic machines and algorithms are grasped by the model. We
see that most of the models are on a Pareto curve, i.e., we pay with a more compli-
cated model in order to achieve higher expressivity. Thus, all these models have
their justification. On the other hand, perhaps we do not need such a fine-grained
tradeoff between simplicity and expressivity.

One can turn this around and observe that a particular abstract algorithm may
be formulated and analyzed in many models in sufficient detail to understand
its main properties. For example, consider parallel sample sort (see [410, Sec-
tion 5.14]) – a generalization of quicksort doing multiway partitioning based on a
sample of the input. Sample sort can be expressed in all the above models except
MRC. Most of these models (except (a)PRAM and LogP) correctly express the
communication volume which is the bottleneck for large inputs. Further restric-
tions on the model only become relevant when we want to grasp exactly when
the algorithm becomes efficient and how this depends on the algorithm used for
sorting the sample. Even then, the models PEM, BSP+, and point-to-point are
similarly useful for investigating this. Concrete network models or multilevel
hierarchies seem overly complicated to investigate such a simple two-level algo-
rithm.

Exercise 26 Pick two models from Table 2.6 and compare them. Point out ad-
vantages and disadvantages of each model. Try to name applications where each
model would be (in)adequate. Some interesting pairs: PEM versus point-to-point
or BSP versus MRC.

As a conclusion and partial synthesis, we propose to take concrete models
into account as late as possible in the design and analysis process. We could call
this the model-agnostic approach. Rather, we should try to describe algorithms in
terms of basic primitives that have concrete implementations in many models. If
desired, we can then plug in the analysis of the primitives in a particular model
to obtain a concrete analysis. For example, a basic sample sort can be expressed
as 1: local sampling, 2: a gather of the sample, 3: local sorting of the sample, 4:
broadcasting of splitter elements, 5: local partitioning, 6: all-to-all data exchange,
and 7: local sorting. A more scalable variant replaces steps 2–4 with a fast parallel
sorting algorithm for small inputs.

Draf
t100 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

+

++

input:

output:

x0x1 y1

z0z1z2

y0 c

Figure 2.35: Circuit for a 2-bit adder that computes z = x+ y+ c where c is an
input carry bit, x and y are 2-bit numbers and z is a 3-bit number. The circuit is
built out of full adders that take three input bits resulting in two output bits.

2.8 Circuits

The models considered so far describe the step-by-step manipulation of the state
of a computation by a program. Now, we take a lower-level, memoryless view
where we consider how a single function is composed from a set of primitive
operations.

2.8.1 Logical Circuits

The most simple circuits [437, Section 9.3] are described by a directed acyclic
graph (DAG) that describes a Boolean function f : {0,1}n → {0,1}k. Nodes of
this graph are called gates. There are n input gates with in-degree zero. The i-th
input gate outputs the i-th input bit xi. All other gates compute the logical “and”,
“or”, “xor” or “not” of their input bits and output this to a set of other gates.
There are k designated output gates that output f (x1, . . . ,xn). Figure 2.35 gives an
example of a circuit with five input bits and three output bits. Since a single circuit
can only handle inputs of a fixed size, one also considers circuit families with one
circuit for each possible input size. The most important complexity measures of
a circuit are its size (number of gates) and depth (the length of a longest path in
the circuit DAG). These are related to the concept of work and span introduced in
Section 2.4.1 for PRAMs.

Despite their simplicity, circuits are a universal model of computation. In
particular, any computation that is done by a Turing machine can also be done by
a circuit family with a size that depends quadratically on the time required by the
Turing machine.

We can also generalize circuits to allow further gates (with a bounded number
of inputs) and wires that carry a bounded number of bits. This changes the com-

Draf
t2.8. CIRCUITS 101

plexity of a circuit at most by a constant factor (but note that then the graph struc-
ture does not contain all the required information because, for non-commutative
operations, it matters to what port of a gate a wire is connected). For example,
such a generalization makes sense when we are designing circuits that perform
arithmetic operations. The textbook [410, Section 1.1.1] gives an example for
performing addition. Here, a full-adder gate with three input bits and two output
bits is a natural building block (see also Figure 2.35). Indeed, as long as we keep
in mind what we are doing, we can also model more abstract computations as a
kind of circuit. For example, a sorting network consists of “gates” which compute
s(x,y) = (min(x,y),max(x,y)) where x and y are abstract objects that allow no fur-
ther introspection [51, 10]. In Section 2.4.1, we used these kinds of generalized
gates to model computations on entire machine words.

Exercise 27 Look for sorting networks for 5 elements with depth 5. Can you
achieve the optimal size of 9?

When implementing algorithms in hardware, we also need a way to represent
state. Registers can store a vector of signals. In order to describe such systems, we
need a hardware description language such as VHDL [294] or Verilog [452]. To
precisely define how such a logical hardware description behaves, these languages
need to define the temporal behavior of the registers. Describing this precisely is
beyond the scope of this book. A frequent approach is that a clock signal plus
further logic defines when a register takes over signals from its inputs. Note that
field programmable gate arrays (FPGAs) blur the distinction between software
and hardware, i.e., on a machine with FPGAs, we can compile algorithms de-
scribed by a hardware description language such that it can be executed using the
FPGAs.

Open Problem 19 (Scalable hardware) Much of the algorithms community is
deterred by the complexity of describing hardware algorithms. On the other hand,
computer architecture is dominated by a quantitative approach that concentrates
on detailed experiments [229]. However, using experiments exclusively makes it
difficult to ascertain scalability to large systems. We believe that an asymptotic
analysis of the scalability behavior of hardware might help to arrive at more scal-
able hardware architectures, e.g., for shared-memory management in large paral-
lel computers. A successful example (given the limited budget) is the SBPRAM
project [3, 369]. One interesting question could be a generalization to exploiting
modern technology parameters, caches, asynchrony, etc.

Draf
t102 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.8.2 Physically Realistic Circuits

All the machine models discussed so far are abstractions that make simplifying
assumptions that decouple the notion of costs in the model with the costs in a
physical realization of the machine. Even circuits are unrealistic in that sense
because they assume constant time communication along wires of arbitrary length.
Also, the volume or weight needed for a physical realization of a circuit grows
more than proportionally to their size measured in the number of gates if we need
long wires. Thus, more realistic models could take such physical constraints into
account.

In the 1980s, a model for two-dimensional VLSI circuits was intensively in-
vestigated [453]. Here, signal propagation delay along wires is still considered
a constant but the actual area of the circuit in a two-dimensional layout is taken
into account. In particular, an interesting tradeoff between area and time has been
found. For many problems, there are lower bounds on the product AT 2 where A is
the VLSI layout area and where T is the required time. For example, all the com-
munication networks with logarithmic delay and linear bisection bound discussed
in Section 2.5.4 need quadratic area Ω

�
p2
�
. An informal way to understand that

is to look at the layout of butterfly networks in Figure 2.26-right. In order to have
a constant distance between wires, the distance between layers has to be doubled
from layer to layer. With log p layers and linear area of the first layer, we arrive at
quadratic overall area. These considerations can in part be generalized for three-
dimensional layouts, e.g., [377]. Three dimensions help by allowing the volume
to grow with only O(p3/2).

A next step is to take into account that the speed of light limits the speed
of computation. Hence, at a fixed feature size of a chip technology, the running
time of most nontrivial computations on n bits will grow at least with Ω

�
n1/3

�

(or even Ω
�
n1/2

�
for two-dimensional layout). Note that this already applies to a

single memory access to a data structure storing n bits. From that point of view,
the fastest realistic machine consists of a regular three-dimensional grid of small
processors. The cellular automata discussed in Section 2.5.7 are such a model.
However, further limitations may play a role. Most importantly, assuming that
computations are connected with producing heat, we must be able to remove that
heat through the surface of the machine; see also Section 2.14. Since the surface
grows only as p2/3, this limits the amount of computation possible per unit of time.
This implies different tradeoffs for how to arrange the processors [417]. Perhaps
the most practical arrangement is to have the computation take place close to the

Draf
t2.8. CIRCUITS 103

Figure 2.36: Two extreme configurations of memory (blue) and heat-producing
processing (pink) that are physically feasible with respect to cooling. Left: com-
puting is only on the boundary of the computer. Right: A more coarse-grained
3D arrangement of units that combine computing, local memory, communication,
and cooling infrastructure.

surface of the machine and to use the third dimension for storage and communi-
cation; see also [377]. In particular, moving heat from the inside has additional
issues. Doing this by diffusion is inherently inefficient. Also in more directed
cooling approaches, friction of a gas or liquid used for cooling may asymptoti-
cally become larger than the amount of energy that can be removed. Indeed, this
observation seems to be reflected in recent technological developments. For ex-
ample, SSDs now routinely use many layers of memory per chip and they also
densely stack memory chips. In contrast, processor chips stick to two dimen-
sions (except for memory modules that may be stacked on top of them) and are
nevertheless highly constrained by their heat dissipation.

Open Problem 20 (Scalability and physics) In continuation of Open Prob-
lem 19, one can go beyond standard simplifying assumptions of hardware design
and can take physical constraints such as cooling and wire delays into account. For
example, one could consider how the situation for the very simple cellular automa-
ton model [417] changes if one uses full-blown RAMs plus a memory hierarchy:
Assume a hardware budget for n machine words of memory and p = Õ(n2/3)
PEs.29 One approach is a flat array of Õ(n1/3 × n1/3) PEs with a (rather deep)
memory hierarchy arranged in the third dimension and latency Õ(n1/3). How
should this memory hierarchy be arranged? Perhaps it makes sense to allow
global memory access to a large part of the memory by all PEs? Another ap-
proach would be near cubic PEs of side length Ω̃(n1/9) arranged into a cube of
Õ(n2/9 × n2/9 × n2/9) PEs. Each PE could have a (rather shallow) local memory

29Here we use Õ(·) as a variant of asymptotic notation that ignores polylogarithmic factors.

Dra
ft

104 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

hierarchy with latency Ω̃(n1/9).30 Figure 2.36 illustrates these two configurations.
How can such a system be cooled without friction asymptotically eating up all of
the cooling effects? Would a fractal structure of cooling tubes and channels help?
How does this compare with the fractal structure of our blood vessels [196]? Does
this fractal structure influence the arrangement of the PEs?

**Exercise 28 Consider the latter approach described in Open Problem 20 with
PEs that are cubes of side length Õ(n1/9). A simple approach to cooling such a
system would be Õ(n2/9 × n2/9) water pipes of diameter Õ(n1/9) going through
the entire cube. With this system, constant flow velocity suffices to transport the
Ω̃(n2/3) W of heat generated by the PEs (assuming each PE dissipates constant
power). Calculate the dissipated heat due to friction within the pipes. Do that first
assuming laminar flow. Now take into account, that with growing pipe diameter,
the Reynolds number of this system grows, eventually leading to turbulent flow.
How does this affect the asymptotic friction loss of the cooling system? (see also
en.wikipedia.org/wiki/Friction_loss, accessed Dec. 17, 2023).

2.9 Streaming Algorithms

The concept of a streaming algorithm originates from processors analyzing data
streams in a network. Their memory is often much smaller than the total analyzed
data volume. Hence, we need algorithms that take very little memory. However,
there are also many other sources of data streams. They may originate from sensor
hardware (e.g., video cameras) or from within a long-running application. The
latter data source might for example be for performance profiling or for analyzing
the outcome of a scientific simulation over time.

More formally, a streaming algorithm gets a sequence of N (small) objects
o1,o2, . . . ,oN as input that it cannot store. It is required to take total space o(N)
and processing time o(N) per object [230, 40, 344, 126]. See also Figure 2.37.
Often the requirements are even more strict, with a target of polylogarithmic space
and near-linear total execution time. Note that the input may arrive in real-time so
that the analysis can also have a real-time aspect (or, sufficient space for buffering
unprocessed objects is needed).

30This can be viewed as a physical model explaining why the processor in memory approach is
useful [265].

Draf
t2.9. STREAMING ALGORITHMS 105

PE 2

random access

PE 1

network

...

...

registers
input data stream output data streamALU

PE p

N objects (optional)

≪ N
p ≪ N

p
≪ N

p

memory ≪ N

Figure 2.37: Streaming algorithms look at a random access machine (see also Fig-
ure 2.3) with limited memory processing a huge data stream (top). In distributed
streaming (bottom), the data stream is split over p PEs of a distributed memory
machine (see also Figure 2.17). Some theoretical models restrict the network to a
star network centered at a coordinating PE.

Exercise 29 Give a constant-space streaming algorithm for calculating the sam-
ple mean and variance of each prefix of a stream of numbers. Perform a
web/literature search to discuss tradeoffs with respect to efficiency and numeri-
cal stability of various concrete algorithms.

More specific constraints are used for particular classes of streaming prob-
lems. For example, in graph streaming algorithms [169, 321], one often observes
a sequence of edges of a graph. Then we may be allowed to store a constant (or
polylogarithmic) number of machine words per node of the graph.

Particularly large data sets are involved when the data stream arrives in a dis-
tributed fashion at many places. Hence, we need distributed streaming algorithms
based on any of the models discussed in Section 2.5, see Figure 2.37. This makes
particular sense when the analyzed data stems from a parallel application such as
a massively parallel simulation. Discretized streams [488] are an abstraction that
considers batched, stateless computations on small batches of data and thus al-

Draf
t106 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

lows scalable fault tolerance. Allowing state but restricting it to a small amount of
internal memory in each PE seems like a useful model for distributed streaming.
We used this model for describing highly scalable reservoir sampling [248].

Open Problem 21 (Scalable distributed streaming algorithms) Surprisingly,
using the terminology from Section 2.5, most work on distributed streaming so
far concentrates on the notoriously nonscalable star network from Section 2.5.4,
e.g. [127]. Hence, there is great potential for more scalable distributed streaming
algorithms.

A logical extension of the single-pass streaming algorithms considered here
are multi-pass algorithms. It is difficult however to match this approach with
the original motivation for streaming problems. The concept seems interesting
anyway, for example as a special kind of external memory algorithm that is only
allowed to scan the input. In such a case, one should however compare multipass
streaming with other algorithms that are allowed more general access patterns,
e.g., the random block accesses from external memory.

2.10 Fault Tolerance

A crucial assumption made in most abstract models of computation is that all
components work 100% correctly. However, this becomes increasingly unreal-
istic. Computer systems contain more and more components (transistors, wires,
lines of code, etc.) each of which can fail. Moreover, in order to get more energy
efficient, the physical events defining a logical event in a digital computer get
smaller and smaller; see also Section 2.14. For example, the number of electrons
used to switch a transistor is decreasing. This makes the system more susceptible
to random events like thermal noise, cosmic radiation, or tunneling of electrons
through a potential barrier. Models like quantum computers (Section 2.12) or
analog computers (Section 2.13.3) inherently have to handle such random events.
Already now, hardware and system software are offering several fault tolerance
mechanisms. Error-correcting codes protect memory and communication chan-
nels. Detected errors are hidden by retrying an operation and by reconfiguring
the system to leave out permanently faulty components. This is already now an
interesting area of algorithmic research but still specialized to a small number of
tasks such as writing checkpoints and rolling back to them.

However, with increasingly frequent faults, it will become necessary to move
fault tolerance into more and more algorithms. Basic toolbox algorithms and the

Draf
t2.10. FAULT TOLERANCE 107

PEPE 1 PE PE

timeout

send

memory
local

memory
local

p

memory
local

memory
local

......

ji

...

network

Figure 2.38: A distributed-memory parallel machine where PE i has failed. PE j
learns about this when it attempts to send a message to PE i.

basic operations of the big data tools discussed in Section 2.6 may be the first
targets. As usual in models of computations, we need abstractions from the many
things that can happen in practice. In principle, any component can fail at any
time and we may not be able to cover all possible scenarios. On the other hand,
it may suffice to handle the most frequent types of faults or those that cannot be
covered by hardware or systems software. Here we mention a few such models
without attempting to give a complete overview.

The algorithm theory community has investigated resilient algorithms that
work correctly in the presence of faulty memory [88, 177]. The model used is
a random access machine with O(1) “safe” memory words that are guaranteed
to work correctly. An adversary can corrupt up to δ other memory words. This
model is simple and addresses faults in the most numerous components of a com-
puter system – its memory cells. On the other hand, the overhead of resilient
algorithms is considerable [175] and seems to exceed the cost of hardware mea-
sures like error-correcting codes.

Lower overhead can be achieved in distributed computers. A useful partial
model for fault tolerance is to request a computation to work correctly when a
constant number of PEs stop their work [422] – the fail-stop model; see also
Figure 2.38. Let us work out what this means for the point-to-point model from
Section 2.5.1.31At any point in time t some PE i may stop working. Messages it
has started to send before t, which are not yet delivered at time t, may or may not
arrive. Messages sent to PE i that have not been delivered at time t will never be
delivered. A PE j communicating with PE i learns about this by getting an error

31A similar model has been proposed for version 4.0 of the message passing interface (MPI)
standard [451].

Draf
t108 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

code that signals that a communication has failed due to a stopped PE. To analyze
the running time of fault-tolerant algorithms, we need a bound on the time delay
of such a notification. For simplicity, let us optimistically assume it to be O(α).
But we should keep in mind that the delays may be much larger in practice.32 PE
j can then inform other PEs about the failure of PE i. For example, it could initiate
a process for excluding PE i from some communication context and to produce
an updated PE numbering that is once again consecutive. Or they could employ a
spare processor to fill the role previously played by PE i.

The fail-stop model makes the implicit assumption that this kind of fault is
the most frequent type of error, or, more precisely, that other errors can be hidden
or converted into PE failures. This is the point of view we want to take here as
a starting point. Message exchange between functioning PEs can be protected by
error-correcting codes and by re-transmitting messages when errors are detected.
Network errors that cut off a small number of PEs can be handled by assuming that
these PEs have failed. Only large-scale network errors have to be avoided, e.g., by
having enough redundancy in the network. PEs that only fail intermittently will
be treated like failed nodes.

Open Problem 22 (Scalable fault tolerance) Fault tolerance mechanisms that
scale to the largest machines (where they are most needed) seem to be a wide-open
field. We observe shrinking times between failures and growing times for known
fault tolerance mechanisms like check-pointing [161, 394, 486, 438, 105, 231].
Algorithm-based fault tolerance [243, 84, 231] makes the algorithms themselves
fault-tolerant and thus promises a more scalable approach. However, so far this
has only been done for select numerical computations [161, 394, 486, 231]. For
basic toolbox operations like sorting or the operations of big data tools like
MapReduce this is still an open problem. Even simple basic mechanisms like the
heartbeat protocol for identifying failed machines [241] or leader election proto-
cols for replacing failed coordinators [447, 113] currently need time Ω(p) where
we would like protocols with (poly)logarithmic delay. On the theory side, such
delays have been proven for techniques like randomized rumor spreading [152].
Although these methods were developed for use in fault-tolerant algorithms, it is
not quite clear how they would be used in practice.

32Underneath, the communication system will use some timeout mechanisms. These are a tricky
business. Too long periods slow down the program. Too short periods will produce false alarms. It
will not be possible in general to simply set the timeout to O(α) – even for a large constant factor –
since even a working PE may incur large delays if it is otherwise busy.

Draf
t2.10. FAULT TOLERANCE 109

Even with the simplifying assumptions of the fail-stop model, we get very dif-
ferent problem characteristics depending on how many PEs will fail at the same
time or how frequent failures are. The easiest case is the traditional view that
failures are so rare that even redoing a complete job is feasible. In the largest cur-
rent systems and taking some inspiration from the scalability of traditional parallel
processing, one could consider subproblems that take polylogarithmic time as fast
enough to be repeated when an error is detected. Longer tasks, in particular those
that take time at least linear in p (e.g., operations involving all-to-all communica-
tion with direct data exchange), should perhaps be made fault-tolerant with low
overheads. If we take asymptotics as seriously as in Section 2.8.2, we must as-
sume that a (small) constant fraction of all components will fail as the system is
scaled. An extreme version of fault-tolerance is considered in peer-to-peer net-
works (e.g. [442]) that operate correctly even when a large fraction of the nodes
continuously enter or leave the network.

Exercise 30 Perform an internet search to estimate the hardware failure rates of
the CPU and main memory used in your computer. How big could a distributed-
memory parallel computer become using these components in each compute node
if we want to ensure that the average number of failing nodes within a week is at
most one? Name additional likely causes of failures in such a machine.

The fail-stop model does not directly handle resources that are much slower
than expected. For example, when a processor chip is insufficiently cooled, it
uses a very small clock frequency to protect itself from overheating. The PEs
on this chip will work correctly but may considerably slow down applications.
Such a situation can be handled using appropriate dynamic load balancing or by
monitoring the speed of all PEs and treating overly slow ones as faulty.

Open Problem 23 (Integrating fault tolerance and load balancing) The
above observation suggests that load balancing and fault tolerance should be
treated in an integrated way. Fault tolerance will not catch slow PEs if it does not
integrate a load-balancing aspect. Load balancing can treat failed PEs “almost”
as a very slow PE if it can handle the non-cooperative behavior of failed PEs.
Doing at least both in a scalable way as discussed in Open Problem 22 and in the
textbook [410, Section 14.1] seems to be an important open problem.

Difficult to handle are Byzantine failures [304] where faulty components may
be taken over by an adversary that actively attacks the system.

Draf
t110 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

Another aspect are transient errors, also known as soft errors that occur only
temporarily and may disappear when an operation is retried. These errors are
currently rare and stem mostly from cosmic radiation but may also stem from
thermal noise or quantum effects in future systems that are more tuned for energy
efficiency. In analog computers, at least small deviations from accurate computa-
tions have to be expected all the time. Soft errors are routinely detected and cor-
rected in storage devices and communication channels. They also (more rarely)
occur in logical circuits. Protecting against them requires checking the results of
computations using the techniques described in Section 6.1.

2.11 Private Computations

The cryptography community has done intensive research on computations where
two or more parties collectively perform a computation on private data. Each
party provides part of the input. The other parties are not supposed to obtain
anything additional about the input except the result of the computation [210].
For example, suppose that some big companies in the computer industry would
like to collectively compute the average income of their engineers but no company
wants to divulge the income level it pays. There are quite practical protocols for
computing such linear functions [345]. Figure 2.39-left illustrates this situation.
There are also general methods for privately evaluating a function defined by a

client

PE 1 PEPE 2 server

private
data

private
data

private
data

p

...

public communication

Figure 2.39: Left: a variant of the distributed-memory model for privately eval-
uating a function f that depends on private data. The PEs do not want to reveal
any information on their private data except for the value of the computed func-
tion. This should work, even if an attacker can read all the exchanged messages.
Right: A client-server model for private computation where the client has limited
resources and thus needs the service of a server with larger resources. However,
the server is not trusted.

Draf
t2.12. QUANTUM COMPUTING 111

circuit doing work proportional to the circuit size. However, the involved constant
factors are large and converting an arbitrary computation that takes time t into a
circuit results in a circuit of size t2; see Section 2.8.1, [437].

An interesting variant is the client-server scenario: A client C, e.g., a small
company, wants to use computer resources, e.g., from a provider P. C does
not want P to learn anything (useful) about the actual computations done on its
premises. This is easy if P just provides storage. C can encrypt its data. P will only
learn the update pattern and the total volume of the data. Even this information
can be reduced by adding fake data and fake updates. Indeed, with a logarithmic
overhead, the access patterns can be hidden to the extent that the server provides
a random access memory without learning more than the number of memory ac-
cesses [210]; see also Figure 2.39-right.

Open Problem 24 (Engineering private algorithms) It is currently believed
that in order to make private computing practical on data sets of significant size,
we need protocols specialized for a particular problem, or at least for some ba-
sic toolbox components. The hope is that by exploiting the special properties of
the problem, we can circumvent the large overheads of general approaches. This
seems like a task where the methodology of AE is needed. For example, there is a
result on oblivious priority queues [255] that discusses the role of external mem-
ory algorithms, sorting networks, and RAM algorithms in developing oblivious
algorithms.

2.12 Quantum Computing

Quantum computing [217, 355] is a fascinating emerging field that holds a lot
of promise but can also be confusing. In the last few decades, it was mostly ad-
vanced by physicists. Since most computer scientists use different terminology
and lack some of the physics and mathematics background, it is sometimes diffi-
cult for them to understand the results. This section tries to remedy some of these
difficulties by presenting quantum computing using computer science terminol-
ogy and by abstracting away some of the physics details. In contrast to “popular
science” articles however, the idea is to preserve enough precision to make it
possible to describe and analyze quantum algorithms presented at this level of ab-
straction. In the following sections, we present two important variants of quantum
computing. Section 2.12.1 talks about how quantum operations are incorporated
into familiar models like circuits and RAM machines. Section 2.12.2 explains

Draf
t112 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

how quantum computing can directly solve combinatorial optimization problems.
Both approaches may yield machines that are exponentially faster than classical
computers but there are also a lot of question marks.

Open Problem 25 (From quantum “supremacy” to usefulness and viability)
The term “quantum supremacy” is being used for an important first demonstration
of the power of quantum computing. It marks the point when, for the first time,
a quantum computer can solve some instance of some problem much more
efficiently than any classical computer.33 Note that the definition of this point
allows massive cherry picking on the quantum side. The first problems being
investigated are highly adapted to the available quantum hardware and even the
problem instances under consideration are carefully chosen to be easy for the
quantum computer and difficult for classical algorithms. Algorithm engineering
will play an important role in marking this point. In particular, it is the main
asset on the classical side of this benchmark – allowing new algorithms to be
designed and tuned for the very special problems and instances selected for the
quantum machine. Beyond “quantum supremacy” things will get even more
interesting. When will quantum computers actually solve useful instances of
a useful problem? When does such a niche grow into an economically viable
area of computing? Will quantum computing eventually become the dominating
paradigm of computing? We see algorithm engineering as central at least in the
first stages of this evolution – we need many new algorithms both on the quantum
and classical side and we need careful experimental evaluation to evade rash
conclusions.

2.12.1 From Quantum Circuits to QRAMs

Quantum computers process data objects, that can be in a superposition of several
classical states. The most common case is a qubit that can be in a superposition
of 0 and 1. Usually, such a superposition is written as a complex number of
absolute value 1. The power of quantum computing stems from the fact that n
qubits can be entangled and then represent a superposition of up to 2n possible
states, i.e., a linear combination of states defined in an appropriate vector space.
Operations performed on a set of entangled qubits can thus exhibit exponential
quantum parallelism. This is exciting because quantum computers can do certain

33Many people are reluctant to drop the quotes around “quantum supremacy” since more modest
terms like “eligibility” or “first qualification” might better describe this point and would avoid a lot
of confusion.

Draf
t2.12. QUANTUM COMPUTING 113

part
classicalpartquantum

qbits registers

memory

unitary
operations

measurement

setup & control

Figure 2.40: A quantum random access machine (QRAM).

things that classical computers can only do with exponentially more hardware.
The caveat is that the operations allowed on an entangled set of qubits are quite
limited – they have to be unitary. Unitary operations U can be described as square
linear matrices U over an appropriate complex vector space34 with the property
that UU∗ = U∗U = I where I is the identity matrix and where U∗ denotes the
conjugate transpose operation.35 In particular, unitary operations are reversible,
i.e., they are not allowed to destroy any information and can thus be undone.

Quantum algorithms are often described using circuits whose gates perform
unitary operations; see also Section 2.8.1. Deutsch [143] describes a quantum
Turing machine where the state of the finite state machine consists of m quantum
bits and each cell of the tape consists of one quantum bit. More close to cur-
rently planned machines is the QRAM [275] which is a classical RAM (see Sec-
tion 2.2.1) that also has some quantum registers36 on which it can perform unitary
operations. In particular, the control flow is entirely classical. Interfacing between
the classical and quantum parts of the machine is via preparing the initial state of
quantum bits and via measuring the state of qubits. The probability of measuring
a particular state is proportional to its amplitude in the linear combination stored
in the qubits. The measurement operation collapses the superposition of states
stored in the entangled set of qubits and forces their state to be the measured state.
Thus measurement should usually only happen when the desired result has been

34The scalars in this vector space are complex numbers rather than real numbers as in the more
familiar Euclidean space.

35The matrix is first transposed and then each matrix entry a+ ib is conjugated, i.e., changed to
a− ib.

36This paper [275] does not specify how many bits these registers contain. Following our con-
vention of allowing O(logn) bits would restrict the quantum parallelism to be polynomial in the
input size which would make the QRAM much less interesting from a complexity-theoretic per-
spective. Hence, it makes sense to specify the size of quantum registers separately to be potentially
larger than the size of classical registers (but perhaps polynomial in the input size).

Draf
t114 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

computed with sufficient probability. The probabilistic nature of measurement
also implies that quantum algorithms are inherently randomized in nature.

Preserving the entanglement of qubits requires them to be perfectly isolated
from their environment. Since this cannot be done perfectly, quantum computa-
tions can reliably perform only a rather short sequence of operations. Further-
more, fault tolerance, error correction, etc. will be an important ingredient of
quantum computers and quantum algorithms; see also Section 2.10.

Open Problem 26 (Theory versus practice for quantum machine models)
From what we have said so far, it seems likely that algorithms using a QRAM
with careful consideration of fault tolerance and the number of required qubits
could be a useful abstraction for developing and analyzing quantum algorithms.
How close this model is to reality remains to be seen. At least the first actual
quantum computers have a lot of restrictions with respect to how quantum states
can be prepared, what unitary operations are possible, which qubits can be
entangled, etc. This may just be details we can abstract from as the RAM model
abstracts from complications of classical processors but we do not know yet.
Thus co-exploring the design space of quantum hardware, quantum machine
models, and quantum algorithms is an interesting task for the future.

This will have an impact on which applications will actually emerge. There
seems to be a consensus that the simulation of quantum mechanical processes
will be an interesting application with an impact on physics, chemistry, and mate-
rials science. Later, quantum cryptoanalysis might have a great impact on which
cryptographic mechanisms remain secure. Applications like combinatorial op-
timization and machine learning are also being discussed but sometimes wishful
thinking or marketing considerations seem to be involved.

2.12.2 Quantum Annealing

We now present a more restricted but simple and powerful abstraction of quan-
tum computing. In very general terms, the idea is to have a specialized quantum
computer that can “solve” instances (of bounded size) of some NP-hard optimiza-
tion problem. We use quotation marks since the machine will only “in principle”
obtain optimal solutions if it can use enough time and if it is not subject to any
noise. In practice, the result will often be suboptimal. An interesting implica-
tion from the perspective of theoretical computer science is that, suddenly, the
seemingly academic endeavor of designing reductions between NP-hard prob-
lems becomes a constructive way of “programming” a quantum computer. Indeed,

Draf
t2.12. QUANTUM COMPUTING 115

Steve Jurvetson creativecommons.org/licenses/by/2.0/

Figure 2.41: A 512-qubit chip for quantum annealing by DWAVE.

Figure 2.42: A 3×5 chimera graph, i.e., a 3×5 grid of bipartite 4-cliques (known
as K4,4 in graph theory). The left nodes in the cliques have vertical connections
to the corresponding nodes in the neighboring cliques. The right nodes have hor-
izontal connections.

Dra
ft

116 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

many practical optimization problems have already been treated in this way, in-
cluding graph partitioning, graph isomorphism, clustering, and machine learning
[319, 490, 461, 30, 29, 206].

Open Problem 27 (Engineering reductions for quantum annealing) The
methodology of algorithm engineering can help to engineer reductions. Suddenly
constant factors matter. It might also be that different reductions have different
properties with respect to how well a particular quantum (or classical analog)
computer can solve them.

The term “annealing” stems from an analogy to the classical metaheuristic
of simulated annealing [2] that explores the search space in a probabilistic way,
see also [410, Section 12.5.2]. Indeed, also classical analog computers (see also
Section 2.13.3) can be used similarly since – given enough time37 – simulated
annealing will find an optimal solution. The quantum annealing process [262] can
more efficiently converge to an optimal solution since, besides probabilistically
climbing over “mountains” of the objective function, it can also tunnel through
them.

The NP-hard problem used in current quantum computers is the Ising spin-
glass model. This problem is defined by a weighted graph G = (V = 1..n,E) and
the objective function

H(x1, . . . ,xn) :=− ∑
e={u,v}∈E

w(e)xuxv − ∑
v∈V

c(v)xv

where xi ∈ {−1,1}. For a given quantum computer, the graph is fixed but the node
weights and edge weights can be specified to define the concrete input instance
to be solved. The most well-known quantum computers at the time of writing
this section are produced by the company DWAVE and support a graph of size
n = 2048. The supported graph is the chimera graph depicted in Figure 10.8.
Refer to Section 2.13.3 for classical (hybrid) analog computers for solving the
Ising spin-glass model.

Exercise 31 Explain how to choose the node weights and edge weights of a quan-
tum annealer using a graph G= (V,E) such that it solves the vertex cover problem
on a subgraph of G. The vertex cover problem asks for a minimum cardinality set

37The bad news is that the best known worst-case bound for simulated annealing is no better
than simply repeatedly trying solutions at random.

Draf
t2.13. FURTHER UNCONVENTIONAL MODELS 117

V ′ of nodes such that all edges are incident to a node in V ′. Hint: as the Ising
spin-glass model does not support constraints like “each edge must be incident
to a selected node”, convert these constraints to penalty terms in the objective
function, i.e., terms that make the solution worse if the constraint is violated. By
scaling these penalties to sufficiently large values, they can enforce the constraint
in an optimal solution.

2.13 Further Unconventional Models

2.13.1 The Zoo of Turing-Complete Models

Many models of universal computation were not intended as an abstraction of a
computer. Some of the most surprising ones stem from undecidability proofs for
certain problems. For example, Hilbert’s tenth problem asks for an algorithm that
decides whether a multivariate polynomial with integer coefficients (a Diophan-
tine equation) can take the value zero by assigning integer values to the variables.
The undecidability proof [313] shows that any recursively enumerable set can be
encoded as the solution set of a Diophantine equation. Similarly, any computa-
tional problem can be encoded as a Post correspondence problem – given two lists
of strings α1, . . . ,αn and β1, . . . ,βn, is there a sequence of indices i1, . . . , ik such
that αi1 · · ·αik = βi1 · · ·βik [376].

There are also models that were defined in order to make complexity theoretic
arguments. For example, nondeterministic list processing PRAMs (NLPRAMs)
only need time O(log t) to solve any problem that can be solved by a nondeter-
ministic Turing machine in time t. Note that this implies that NLPRAMs can solve
PSPACE-complete problems in logarithmic time [421] (however, by using an ex-
ponential number of processors that can work on objects of exponential size in
constant time). Several such models are discussed by Vollmar and Worsch [470].
Since it is unlikely that highly theoretical models become relevant for algorithm
engineering, we do not go into more detail.

The situation is different for models that were invented to formalize certain
kinds of abstract computations. For example, Markov algorithms and semi-Thue
systems [82, 359] describe simple rules for string rewriting that lead to a universal
model of computing. Logical programming is based on resolution in Horn clauses
[464, 296]. Such models are relevant for algorithm engineering if one wants to
execute such computations on a real-world machine. Nevertheless, we do not go
into more detail in order to limit the range of models discussed in this book.

Draf
t118 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.13.2 DNA Computing and Molecular Computing

Molecules that can exhibit complex behavior are much smaller than transistors.
For example, a nucleotide that is the basic building block of DNA and RNA has
a length of about 0.3nm compared to the feature-length of VLSI chips that has
currently reached 5nm. Moreover, molecular interactions take very little energy
and thus can also take place in three dimensions without overheating; see also
Sections 2.14 and 2.8.2. In combination, this means that computations that are di-
rectly based on molecules can support a vast amount of parallelism. For example,
1023 carbon atoms have a mass of only about 2g.

The power of molecular computing has first been demonstrated for DNA com-
puting [5, 295]. DNA computing works with a huge number of short DNA and
RNA strands (i.e., sequences of the four basic nucleotides adenine (A), cytosine
(C), guanine (G), and thymine (T)) in water. By performing simple operations
like copying, selection, extraction, etc. this set of strands can be manipulated in a
massively parallel way. It has been shown that NP-hard problems can be solved
using a small number of these steps. However, this approach has several disad-
vantages. Asymptotically speaking, we are only winning a (large) constant factor
of parallelism over a more conventional machine. On the other hand, we lose a
large factor concerning the speed of a single operation (nanoseconds versus min-
utes). One might even argue that this factor grows exponentially with the size
of the involved strands since a DNA computing step involves an annealing pro-
cess for energy minimization. Furthermore, DNA computing is prone to errors
that have to be equalized by introducing a second large factor of redundancy. Fi-
nally, and more interesting for algorithm engineering, DNA computing algorithms
have to use simple brute-force approaches because only a small number of simple
steps can affordably be done. In contrast, conventional computing can use very
sophisticated algorithms. For example, DNA computing has been demonstrated
for traveling salesman problems (see also [410, Section 11.7.2]) with around 100
cities while state-of-the-art conventional solvers can handle thousands of cities
[23].

However, several other approaches to molecular computing can be tried. So
far, none of them succeeded [270]. For algorithm engineering, it is interesting to
note that several of these failures were connected to nonrepeatable results (and in
one case outright fraud). However, with Moore’s law slowing down, alternatives
to 2D silicon electronics will become increasingly urgent. For example, cellular
automata that self-assemble (i.e., crystallize) from simple building blocks seem
interesting; see also [107] and Section 2.5.7. More specifically, already growing

Draf
t2.13. FURTHER UNCONVENTIONAL MODELS 119

a crystal that implements an array of shift registers would constitute a very high-
capacity memory. The algorithm theory community therefore shows continued
interest in this problem with some focus on self-assembling programmable matter
that has considerably more complex building blocks compared to the molecular
cellular automata discussed above [65]. It is also interesting to note that pio-
neering papers on self-replication [353] and self-organization [458] go back to
the pioneers of the conventional computer (John von Neumann, and Alan Turing,
respectively).

Open Problem 28 (Practical molecular computing) Will the vision of molecu-
lar computing eventually become a practical technology? This is perhaps mainly
a question of hardware design – in a very fundamental meaning involving physics,
chemistry, and materials science. However, algorithm engineering may also play
an important role in the task of explaining how to perform useful computations
with very simple unconventional components, with appropriate abstract models,
and with careful consideration of experimental methodology.

2.13.3 Analog Computing

The term “digital age” is used as a synonym for the information age. This comes
from the observation that several revolutionary changes of the last decades have
digital electronics as their basis. Moreover, important analog technologies like
photography, movies, phonographs, telephone, radio, and television were replaced

Figure 2.43: Analog computers. Left: Ferrelt’s tide predictor from 1882. Right:
an EAI 580 from around 1968.

Draf
t120 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

by more efficient and flexible digital technologies.38 Reducing the state of the
basic components to just representing 0 and 1 makes it possible to keep these
components simple and highly reliable. All higher-level functionality can then
be built up from this digital basis. However, this success story is increasingly
questioned since it implies a rather wasteful use of resources, e.g., switching a
single bit means moving a large number of electrons; see also Section 2.14. Also,
arithmetical operations like multiplication need a large number of transistors in a
digital computer whereas they can be performed with surprisingly simple analog
hardware . Therefore analog computing that directly works with continuous sig-
nals may experience a renaissance. In the past, different kinds of special-purpose
analog computers were built based on mechanical, electrical, and electronic com-
ponents. For example, complex electro-mechanical analog computers were used
for controlling the guns of battleships beginning in the early 20th century until
as late as the 1980s. Electronic analog computers were even developed for flight
simulators until the 1970s.

An abstract model for these classical analog computers are networks of com-
ponents that perform operations such as addition, multiplication, division, expo-
nentiation, logarithms, differentiation, and integration on analog signals. Besides
input signals, there are also generators for basic signals, e.g., sine or sawtooth.
Analog computers can be made more flexible by integrating them with digital
computers – hybrid computers. Interfacing between the analog and digital world
uses analog/digital and digital/analog converters [226]. Figure 2.43 gives exam-
ples.

Since analog computers lack the flexibility of digital computers, it seems
likely that many future uses of analog computing will be restricted to special-
ized functions within a hybrid computer in order to improve energy efficiency,
cost, or speed. In this restricted form, the main impact of analog components on
the programming model is that the precision of their computations may fluctuate.
Hence, the techniques for fault tolerance discussed in Section 2.10 will become
more relevant. Indeed, this is already widely used for storage and communication
channels. In solid-state memory, a capacitor stores information encoded as its
amount of charge. Communication channels transmit an analog signal where the
information is encoded as a combination of amplitude and phase. This analog data
is translated into several bits of information using discretization. To achieve high
efficiency, occasional errors can be tolerated through the use of error-correcting

38Arguably, telegraphy using Morse codes was a digital technology. It used binary amplitudes
and analog timing but only two delays – “long” and “short” were used.

Draf
t2.13. FURTHER UNCONVENTIONAL MODELS 121

codes and other fault-tolerance techniques.
Intensive research has been done on implementing neural networks using ana-

log technology [425]. This is a good match because even digital implementations
of neural networks successfully work with low-precision arithmetics. Also, it is
natural to replicate biological neural networks using analog hardware. However,
this technology is not yet used in practice since we are lacking scalable tech-
nologies for reprogramming and training analog neural networks. How exactly
abstract models for analog neural information processing will look may have to
wait until it is clear which kind of technologies will actually work in practice.

Open Problem 29 (Biology meets machine models) However, already now, we
could consider computer-science style abstract models for biological neural net-
works with an eye on artificial neural networks. This closes the loop to the pi-
oneers since Turing machines were intended as an abstraction of the operations
performed by a human mathematician.

One can consider analog computers for solving NP-hard problems as in Sec-
tion 2.12.2. This also makes sense with machines using classical computing. In-
deed, several designs for the Ising spin-glass model have been considered. For
example, Inagaki et al. [251] propose a hybrid machine that evaluates the objec-
tive function using a digital computer. This machine can handle quite large, fully
connected instances. It is very much an open question whether quantum anneal-
ers, classical analog machines, or traditional digital computers will win this race
[222]. With respect to quality, digital computing seems to be ahead [251]. Quan-
tum machines can currently only score for instances that are easy to embed into
the underlying network, e.g., a chimera graph.

2.13.4 Neural Networks

Neural networks are a wide field that is not directly related to machine models.
Thus we do not intend to give a comprehensive survey here and rather refer to
textbooks on machine learning e.g., [212]. Here, we only want to mention some
relations to abstract machine models.

In its most simple (feed-forward) form, a neural network can be abstractly
modeled as a circuit that implements a vector-valued function f (x,θ) where x is
an input vector, and where θ is a parameter vector. See Figure 2.44 for a visual-
ization. A numerical optimization algorithm is used to adjust θ in such a way that
inputs are mapped to “desired” outputs. In supervised learning, this optimization

Draf
t122 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

x4

x3

x2

x1
Σ

Σ

Σ

Σ

Σ

Σ

Σ*

*

*

f (x,θ)

θ

x

outputhidden 1inputLayers:

θ

x1

x3

x2

biasw1 w2 w3

Σ

Figure 2.44: A feed-forward neural network in its most abstract form (top left), a
3-input artificial neuron with ReLU activation function (bottom left), and a 3-layer
network with 4 inputs, 5 neurons in its single hidden layer, and 3 output neurons.
The neurons in the hidden layer have a ReLU activation function while the output
neurons use a logistic activation function.

is based on training examples that provide inputs and desired outputs. The op-
timization algorithm takes into account how well the output matches the desired
output and how well the network is expected to generalize to unseen inputs. The
values propagated along edges in the circuit are conceptually real numbers – using
low-precision representations in practice. Typical computational nodes multiply
values with components from θ (weights), add values, or transform a value in
a nonlinear way (activation function). For example, a simple and successful ac-
tivation function is a(x) = max(0,x) – the rectified linear unit (ReLU). Another
example is the logistic function a(x) = 1/(1+ e−2βx) where the additional pa-
rameter β controls the steepness of the function. Often, the network consists of
multiple layers. Each node v in a layer computes a weighted sum s of a subset
of output values provided by the previous layer. The weights are components of
θ . Node v then provides the output value a(s) to the next layer using a nonlinear
activation function a. Neural networks can approximate more or less arbitrary
continuous functions even with only two layers (one hidden layer). However, this
is not a constructive result and the hidden layer may have to get very large.

Various generalizations are possible. For example, there can be feedback of
output values into inputs used in subsequent steps. With this generalization, neural
networks become a universal model of computation [435], i.e., they can simulate

Draf
t2.14. ENERGY CONSUMPTION AND OTHER RESOURCES 123

Turing machines.
For a fixed value of θ , a neural network can be viewed as a circuit in the sense

of Section 2.8. Circuits describing computer hardware typically use other data
types, basic operations, and architectures but the general concept is the same. The
more important difference is that the designer of a neural network specifies only
the basic architecture and then an optimization process on θ determines the actual
behavior of the network.39

Exercise 32 Consider a neural network with a inputs, o outputs and k layers of
size n. Analyze the asymptotic number of arithmetical operations needed to eval-
uate it. What is the size of its parameter vector θ? Discuss the possible cost
savings of the following tuning measures using asymptotic considerations (and
always assuming that the task performed by the network is still done in a satis-
factory way): Reducing the precision of the calculations; pruning some layers to
have fewer neurons; making the network more sparse by allowing only O(

√
n)

outputs of each hidden neuron.

2.14 Energy Consumption and Other Resources

Most of what we say in this chapter focuses on modeling execution time. Several
other resources are important. Space consumption, I/O volume, or communication
volume are often considered. The number of random bits needed is sometimes
used in theoretical research because it also allows us to infer interesting tradeoffs.

However, energy consumption is arguably even more important than execu-
tion time [382] since it is the limiting factor in mobile applications, because it
has a growing part in the overall cost of computations, and because it is more
directly related to the environmental impact of computing. Energy consumption
is also a fundamental link between physics and computing. In this section, we
first consider pragmatic aspects of energy consumption in current architectures
– Section 2.14.1. Then Section 2.14.2 has a more fundamental look at energy
consumption in possible future architectures.

39Actually, also hyper parameters determining the architecture, e.g., number of layers, size of
layers, etc., can be found using an optimization process.

Draf
t124 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

2.14.1 Energy Consumption in Current Architectures

One reason why energy consumption is often not directly considered is that it is
highly correlated to execution time in sequential computations. If you reduce exe-
cution time by a factor x you also reduce the energy consumption of the computer
by factor x if you assume that the machine runs with constant power (i.e., energy
consumption per unit of time). It is known that there are deviations from this
assumption but they are quite complicated. For example, heavy use of vector in-
structions costs energy. Memory accesses/communication (in particular off-chip)
are more expensive than other operations. On the other hand, a cache fault often
makes the processor wait for the result which reduces power – time remains a
good measure here. Hence, what really reduces the correlation between time and
energy is when the processor successfully overlaps many independent memory
accesses and internal computations.

When we tune a program to reduce execution time by keeping more pieces
of the hardware busy, we may reduce total energy consumption because the idle
power of unused components is saved. Albeit, the savings will be less than what
we would expect with a constant power assumption. On the other hand, acceler-
ating a program by doing more overall work may waste energy.

An interesting issue is the influence of clock frequency on energy consump-
tion. Increasing clock frequency makes the computation faster but costs more
energy. For example, for tasks with a deadline, one can ask what clock frequen-
cies one should choose to meet all deadlines while minimizing energy consump-
tion. The increase in energy consumption is superlinear in the clock frequency
since increasing clock frequency also requires increased voltage. This is further
complicated by bounded maximum frequency, discrete steps, and parts of the sys-
tem (e.g., memory subsystem) that have a fixed frequency. All of this is much
more complicated than the simple models used in theoretical scheduling papers
[45, 12, 416, 382].

This becomes even more complicated with parallelism. Processor cores can
run at different clock speeds. In principle, one can save energy by using many
cores with small clock frequency rather than few fast cores. This is particularly
true if cores consume energy even if they are not used. On the other hand, par-
allelization overheads easily eat up possible savings. Similarly, communication
channels can run at different bandwidths and thus further broaden the spectrum of
possible strategies. Thus, specifying concrete models for energy consumption is
complicated. However, let us now try to formulate concrete models. A compo-
nent running at speed s will require power α + f (s) where f is a monotonously

Draf
t2.14. ENERGY CONSUMPTION AND OTHER RESOURCES 125

growing function. Moreover, the maximum speed is bounded. Concrete forms for
f could be a piece-wise constant function or a function proportional to sγ for some
constant γ > 1. We can also count different operations separately that are known
to cost significant energy, e.g., floating point multiplications, or main memory
accesses.

Exercise 33 Find a way to perform power measurements on one of your com-
puters. There are both software solutions (e.g. powertop on Linux) and cheap
hardware solutions. Now measure power consumption in different modes: idle,
performing light interactive work. Run a sequential algorithm (e.g., sorting).
Run a parallel algorithm performing the same task using a variable number
of cores. Which configuration is most efficient? Explore further situations,
e.g., with and without GPU use, memory-bound tasks versus compute-bound
tasks,. . . Summarize your findings.

Open Problem 30 (Energy-efficient AE) Overall, AE for energy-efficient algo-
rithms is a wide-open field. For example: What are appropriate models for energy
consumption? Where do energy-efficient algorithms make a real difference com-
pared to fast algorithms? What are realistic models for energy-efficient schedul-
ing? When/how does parallelization help? Pruhs [382] gives several interesting
open theoretical problems with important links to practice. However, we believe
that AE engineering can address a much wider range of problems with an even
larger impact on practical solutions – constant factors matter, make experiments,
etc.

2.14.2 Energy Consumption in Future Architectures

The increasing importance of energy consumption is one of the main driving fac-
tors for considering some of the unconventional models of computation consid-
ered above. The reason is that the prevalent model of accurate, highly reliable
digital computers comes at the cost of a large amount of redundancy – switching a
transistor means moving a large number of electrons. Molecular computing (Sec-
tion 2.13.2) or analog computing (Section 2.13.3) lifts some of these assumptions
and thus could be much more energy efficient. This comes at the price of lower
precision and higher failure rates. Hence, the fault tolerance techniques discussed
in Section 2.10 are likely to become more relevant. The same happens when tra-
ditional semiconductor technology is operated in a regime with maximum energy
efficiency [157].

Draf
t126 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

In designing future, energy-efficient computer architectures, the fundamental
physical connections between computing and energy consumption will become
more important; see also Section 2.8.2. In particular, there is a fundamental limit
of dissipating energy of at least kT ln(2) Joules of energy for erasing one bit of
information at a temperature of T Kelvin where k = 1.380649 · 10−23J/K is the
Boltzmann constant [283] (the von Neumann–Landauer limit). Hence, any irre-
versible computation is associated with this energy consumption. This is several
orders of magnitude away from the current state of the art but approaching this
limit increases the likelihood that thermal noise leads to computation errors. Very
interesting is the “loophole” that we can, in principle, do any computation in a
reversible way [61].40 Then, computations can, in principle, be arbitrarily energy
efficient. There is also evidence that reversible computing can already help save
energy long before the von Neumann–Landauer limit is reached [186]. Also note
that the quantum part of a quantum computer requires reversible computations;
see Section 2.12. However, energy-efficient reversible computing is also interest-
ing for future classical machines.

Open Problem 31 (Engineering reversible algorithms) Reversible algorithms
have not been intensively investigated by the algorithms community so far (but
see [137, 462]) and the perspective of AE may give additional opportunities to
arrive at interesting approaches that may prove useful for future energy efficient
computer architectures.

2.15 Summary and Outlook

We have seen a large number of abstract models of computation. One might be
tempted to say that there are too many of them. However, the requirement to have
simple models also implies that one needs a significant number of models in order
to illuminate different aspects of a problem. Still, some model variants explained
above may be interchangeable. Also, some of the models might serve a particular
purpose well but some results developed for them might overexploit simplifying
assumptions of the model so that they are far from being useful in practice.

It should also be noted that even for developing and analyzing a particular al-
gorithm, several models can be useful. For example, consider super scalar sample
sort [420, 38] – one of the best comparison based sorting algorithms in practice;

40The other loophole – reducing temperature – is problematic because the costs for cooling may
eat up the savings within a cooled computer.

Draf
t2.15. SUMMARY AND OUTLOOK 127

see [410, Section 5.13]. One might analyze the impact of the splitter selection
strategy by just counting comparisons. Its main feature is a way to avoid branch
mispredictions; see also Section 2.2.5. The algorithm is also cache efficient, which
can be analyzed in the external memory model of Section 2.3. One can then go on
to analyze additional aspects like associativity misses [326], TLB misses, or mem-
ory traffic. The shared-memory version [38] can be analyzed in a PRAM model,
perhaps using a realistic one like aCRQW PRAM (see Section 2.4.2) that illumi-
nates access contention. Main-memory traffic of that algorithm can be discussed
using the PEM model of Section 2.4.6. One can then go on to consider NUMA
effects using a hierarchical shared-memory model or a distributed-memory model.

An interesting question is how models of computing will develop in the future.
The one safe bet is that we will see many further models. While some models may
fall into disuse because they are awkward or too removed from reality, new models
will be needed to cover the more diverse landscape of actual computers. The
push for more (sustainable) performance makes parallel processing and energy
efficiency a prevalent issue. This strengthens more physically realistic models and
moves fault tolerance and analog computing into the mainstream.

Whether quantum computing will become widely useful depends on future
technological breakthroughs, in particular with respect to error correction and
large-scale entanglement. If this eventually works, a likely outcome is that it is
used for solving relatively small instances of selected hard problems, while solv-
ing simpler problems on large data sets is still cheaper with classical computing41.
However, an interesting scenario would be a disruptive technology that allows
large-scale quantum computing and makes it more energy efficient than classical
computing. We would then have to reinvestigate many algorithmic problems in a
reversible, fault-tolerant, and quantum-parallel manner.

Even if quantum, analog, fault-tolerant, or physically realistic computing
takes more and more room, we believe that the abstraction of a reliable, classical,
digital computer is too attractive to drop it entirely. For more and more prob-
lems, the bottleneck is not computing performance but the ability of (possibly
AI-assisted) humans to design and implement the required software. The sweet
spot is likely that most application engineers use the above conservative models
but that they will design their algorithms such that they work in parallel and such
that they can use a basic toolbox that encapsulates aggressively tuned algorithms
based on more low-level models. Of course, the scenario of super-human artifi-

41It is also hard to imagine a smartphone whose processor is cooled to near absolute zero using
battery power.

Draf
t128 CHAPTER 2. MACHINE MODELS (WITH DARREN STRASH)

cial intelligences that design software and hardware themselves would remove the
main prerequisite of the above argument. Then it is philosophically interesting to
speculate whether even those machines would find our current abstractions useful
but it might no longer be practically relevant.

