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Chapter Machine Models in
1st volume of my book
Algorithm Engineering Draft:
https://ae.iti.kit.edu/documents/people/sanders/aeModels.pdf

My (parallel) algorithms textbook [SMDD19]

My lecture on parallel algorithms
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Sources

 https://ae.iti.kit.edu/documents/people/sanders/aeModels.pdf


Preferably simple

Preferably close to reality

̸= programming model
(which lacks performance aspect)

̸= performance model
(which is much more detailed,
often more specific to a particular problem)

random access

register

memory

ALU
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What is a (good) Machine Model
Abstraction of computations that allow (asymptotic) analysis of the resource
consumption of algorithms



(modern variant of the von Neumann Model) [SS63, SMDD19]

random access

register

memory

ALU

Sequential algorithms

Count machine instructions

on words of size O(log n) for input size n,
i.e. allow word/bit parallelism.

Still the basis for much of algorithmics.

5/49 Jun 17, 2024 Peter Sanders: Taming the Zoo of Parallel Machine Models Institute of Theoretical Informatics, Algorithm Engineering

Random Access Machines (RAM)



Modern machines are vastly different:

Internet
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many forms of parallelism, complex memory hierarchies,...

Challenge: reconcile precision and simplicity
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The Problem



Idea: change RAM as little as possible.

p PEs (Processing Elements); numbered 1..p.
Every PE knows p and its own number.

One machine instruction per clock cycle and PE – synchronous

Shared global memory

PE 1 PEPE 2

...

p

shared memory
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A Simple Parallel Model: PRAM
Parallel Random Access Machine



Concurrent access: Allow access by multiple PEs to
the same memory cell in the same step?
Concurrent=yes, Exclusive=no.
Read or Write.

EREW PRAM:
Exclusive-Read, Exclusive-Write PRAM
most restrictive

CREW PRAM:
Concurrent-Read, Exclusive-Write PRAM.
Kind of default since
caches approximate concurrent read well.

CRCW PRAM:
Concurrent-Read, Concurrent-Write PRAM.
further variants regarding how conflicts are
resolved (common, arbitrary, priority, combine)

...

...

...

CRCW PRAM

CREW PRAM

EREW PRAM
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Basic PRAM Variants



PE index i ∈ {0, . . . , n − 1}
active := 1
for 0 ≤ k < ⌈log n⌉ do

if active then
if bit k of i then

active := 0
else if i + 2k < n then

a[i] := a[i] + a[i + 2k ]
a

0 n
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Example: Reduction of Array a[0..n)



PRAMs were THE parallel model in the 1980s.
Parallel processing fell “out of favor” in the mid 1990s
(many bankruptcies of companies, era of “just wait for faster sequential processors”).
The PRAM model was seen as part of the problem.

Unrealistic assumptions? Too fine-grained, hard to realize physically, lockstep execution is
unrealistic,. . .
Lack of transfer into applications
Theoretical algorithms often look very different from what is done in applications
Research ran out of interesting problems?

PE 1 PEPE 2

...

p

?shared memory
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Criticism of PRAM



PE 1 PEPE 2

...

p

!shared memory

In retrospect the criticism was largely unfair.

PRAMs are very natural first step to express parallelism in computations.

Many efficient PRAM algorithms can be further developed into efficient realistic algorithms.

Todays many-core CPUs and GPUs are much closer to PRAMs than the first parallel
computers (e.g., #cores, memory channels).

Other now popular models such as MRC seem much farther removed from reality than PRAM.

Surprisingly many open problems are left.

The actual problems were

Coarse complexity theoretic goal of polylogarithmic time and polynomial work
(⇒algorithms can be highly inefficient)

Lack of algorithm engineering

For example, my results on shortest paths [MS03b], matchings [BOS+13], sampling
[SLH+18, HS22], or suffix arrays [KSB06], can be naturally explained using PRAM models.
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In Defence of PRAMs



asynchronous Concurrent-Read, Queued-Write PRAM [GMR98, GMR99, SMDD19].
Programs must be correct regardless how long it takes to execute an instruction.
Write access takes time k when k PEs concurrently access a cell.
Uses atomic operations like fetch-and-add or compare-and-swap (CAS).
⇒ adequate modelling of contention.

...
...

...In
st

ru
ct

io
n
s

t

aCRQW PRAM
queue

Exercise: What happens with
our reduction example?
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Asynchronous PRAMs
aCRQW PRAM:



Linear Probing [MSD19, SMDD19] largely does the job.

x

h

insert

Constant expected time for find – contention does not appear in practice as concurrent
accesses are covered by cached copies.

Constant expected time for insert – contention is unlikely.

Update can suffer from contention.

Maintaining a global variable for size kills performance of insert.
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Example: Concurrent Hash Tables



There is a large body of very important work on concurrent algorithms and data structures (in
particular lock-free/wait-free) that is lacking a scalability analysis (or provably scalable variants).
I believe aCRQW-PRAM or related models can be a good basis here.

x

h

insert

hash table priority queue
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Open Problem:
Scalable Concurrent Algorithms and Data Structures



Abstract from the actual number of processors p [AB16, BFGS20] used for a computation.
Only look at the

work W performed and the

span (or depth) T∞ i.e., the longest sequence of dependent operations.
≈ time with unbounded # of PEs.

Computation = graph of dependencies.
Unfolds at running time (̸= circuit models)
Use fork operations to spawn tasks and atomic shared-memory operations
(e.g. CAS on aCRQW PRAM).
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The Work-Span Model



Function sumArray(a : Array , i, j) // compute
∑j

k=i a[k ]
if i = j then return a[i]
else return sumArray(a, i,

⌊ i+j
2

⌋
)+ sumArray(a,

⌊ i+j
2

⌋
+ 1, j)

sumArray(a, 1, 3)

sumArray(a, 1, 2)

sumArray(a, 1, 1)

sumArray(a, 4, 4)

sumArray(a, 2, 2)

sumArray(a, 3, 3) sumArray(a, 5, 5)
13

sumArray(a, 1, 5)

4 4
sumArray(a, 4, 5)

1 5

68

14

3 1 4 1 5a:
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Example



Roughly: Using a work-stealing load balancer [BL99, SMDD19], the aCRQW PRAM can run
programs in the work span model in expected time

T (p) =

work︷︸︸︷
W
p

+

span︷︸︸︷
T∞

(But check details of the model, e.g., what kind of forking)

Test-of-Time Award SPAA 2024
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Load Balancing for Forking Programs



Any PRAM can be augmented to model a 2-level memory hierarchy [AGNS08].

PE 1 PEPE 2

block transfers

p

...

shared external memory

M M M

B B B

Count (parallel) I/O steps (in addition to internal work).
Example: cache-efficient parallel sorting [AFSW22].
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Parallel External Memory (PEM)



PE 1 PEPE 2

memory
local 

memory
local 

memory
local 

p

...

network

Conceptually as simple and natural as PRAM
We need a cost model for communication.
Here: Abstract away the concrete network topology
which was highly popular in the early days of parallel computing [Lei92].

3

2

0

1
0
1

2

3
layer

i

k

0 1 2 7653 4
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Distributed-Memory Models



Decompose computation into synchronized supersteps [Val94]
L Latency (includes global synchronization)
g gap – measures network throughput
h bottleneck communication volume (h-relation)
w max. local work

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

w

L
+

g
h

S
u

p
er

st
ep
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Bulk Synchronous Parallel (BSP)



+ widely used
+ supported by some libraries
− global synchronization is as expensive as other common primities such as broadcast,

reduction, prefix sum which all take a logarithmic number of supersteps
− too little differentiation of communication patterns,

e.g., wrt average message size, locality
− In practice, think of L as a huge value growing linearly with the number of PEs p!

Special case CGM (Coarse Grained Multicomputer) – only count rounds

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

w

L
+

g
h

S
u

p
er

st
ep
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BSP: Strengths and Weaknesses



Define h in terms of packets of size B rather than using machine words (BSP∗ [BDadH95]).

Allow the collectives broadcast, reduce, prefix sum within a single superstep (anyway part of
BSP libraries).

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

Local Computation

Incoming Messages

Outgoing Messages

Incoming Messages

w

L
+

g
h

S
u

p
er

st
ep
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BSP+: Fixing Some Weaknesses [SS24]



Time for sending a message of length ℓ [FL94, CHPvdG07, SMDD19]:

Tcomm:= α+ βℓ

Each PE can progress on one send and one receive at any point in time (full duplex).
(Several variants, e.g., either or = half duplex)

+ simple

+ asynchronous

+ defacto standard in
practical distributed-memory computing

+ more useful parameters than
the related LogP [CKP+93] model
(see also LogGP model [AISS97])

− less known in theory community

PE 1 PEPE 2

memory
local 

memory
local 

memory
local 

p

...

network

l
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Asynchronous Distributed Memory:
Point-to-Point Communication (P2P)



PE 1 PEPE 2

memory
local 

memory
local 

memory
local 

p

...

V?

Owner computes paradigm:
Minimize bottleneck communication volume V .
Can we achieve volume sublinear in the local computation time?
Can we achieve polylogarithmic span?

Examples: duplicate detection [SSM13], linear programming [SSM13],
top-k problems [HS16], graph generation [FLM+19]
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Communication Efficient Algorithms



All PRAM variants as well as BSP, P2P can emulate each other with at most logarithmic
slow-down (assuming L ⊆ O(log p), {g, β, α} ⊆ O(1)).
BSP+, P2P with ℓ = B = α/β and PEM seem closely related.
However, studying communication efficient algorithms with PEM would require you to assume
that the input resides in the local memories.

PE 1 PEPE 2

block transfers

p

...

shared external memory

M M M

B B B

PE 1 PEPE 2

memory
local 

memory
local 

memory
local 

p

...

network

B BB

Thus, decision for a particular model often is a matter of taste or you are interested in looking at
parameters like α as variables rather than constants.
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Relations Between Models



Use different models for different aspects of your algorithm.
Deal with hierarchical and heterogeneous architectures.
For example, parallel sorting [AFSW22]:

BSP for a distributed memory sample sort

PEM for a node-local shared memory sorter and partitioner

specialized modelets to deal with branch mispredictions [KS06, SW04] or associative caches
[MS03a]

Much cleaner than one all-encompassing model.
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Model Lego



Construct your algorithm from building blocks like
broadcast, reduction, prefix sum, permutation, sorting, hash tables,. . .

Then plug in analysis for different models.

Model-Bingo in examples from my work:
random permutation [San98],
matching [BOS+13],
sampling [SLH+16]

broadcast

local
computation

sort

reduce

prefix sum
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Model-Agnostic Algorithm Design



model

design experiment

analyse implement

benchmarks

perf. guarantees alg. libraries

appl. engineering

deduction

hypotheses

falsifiable

ap
p
li

ca
ti

o
n
s

induction

Engineering
Algorithm

pick initial model(s)
design
implementation takes care of unmodelled features
experiments may cause changing the model
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Machine Models in Algorithm Engineering
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[DG08]
D =

⋃
c∈C

ρ(c)

C = {(k ,X) : k ∈ K∧
X = {x : (k , x) ∈ B} ∧ X ̸= ∅}

A ⊆ I

B =
⋃
a∈A

µ(a) ⊆ K × V

...

1: map

2: shuffle

3: reduce
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MapReduce



(birthday, {1,1,1})(to, {1,1}) (you, {1,1}) (dear, {1})

(Timmy, {1}) (happy, {1,1,1})

(to, 2) (you, 2)(birthday, 3)

(dear, 1) (Timmy, 1) (happy, 3)

(birthday,1)(happy,1) (birthday,1) (to,1)(you,1) (happy,1)(birthday,1)

(dear,1) (happy,1) (birthday,1) (to,1) (you,1)(Timmy,1)

happy birthday to you

happy birthday to you

happy birthday dear Timmy

D =
⋃
c∈C

ρ(c)

C = {(k ,X) : k ∈ K∧

A ⊆ I

B =
⋃
a∈A

µ(a) ⊆ K × V

X = {x : (k , x) ∈ B} ∧ X ̸= ∅}

...

1: map

2: shuffle

3: reduce
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MapReduce Example: Word Count



D =
⋃
c∈C

ρ(c)

C = {(k ,X) : k ∈ K∧
X = {x : (k , x) ∈ B} ∧ X ̸= ∅}

A ⊆ I

B =
⋃
a∈A

µ(a) ⊆ K × V

...

1: map

2: shuffle

3: reduce

+ Abstracts away difficult issues
* parallelization
* load balancing
* fault tolerance
* memory hierarchies
* . . .

− Large overheads

− Limited functionality

32/49 Jun 17, 2024 Peter Sanders: Taming the Zoo of Parallel Machine Models Institute of Theoretical Informatics, Algorithm Engineering

MapReduce Discussion



D =
⋃
c∈C

ρ(c)

C = {(k ,X) : k ∈ K∧

A ⊆ I

B =
⋃
a∈A

µ(a) ⊆ K × V

X = {x : (k , x) ∈ B∧
X ̸= ∅}

...

1: map

2: shuffle

3: reduce

A problem is in MRC [KSV10] iff for input of size n:

solvable in O(polylog(n))
MapReduce steps

µ and ρ evaluate in time O(poly(n))
µ and ρ use space O

(
n1−ϵ

)
(“substantially sublinear”)

overall space for B O
(
n2−ϵ

)
(“substantially subquadratic”)

Roughly: count steps, (good for coarse grained complexity theory)
very loose constraints on everything else
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MapReduce MRC Model



A problem is in MRC iff for input of size n:

solvable in O(polylog(n))
MapReduce steps

µ and ρ evaluate in time O(poly(n)) n2? n42? “big” data?

µ and ρ use space O
(
n1−ϵ

)
(“substantially sublinear”)

overall space for B O
(
n2−ϵ

)
(“substantially subquadratic”) “big” data?

Roughly: count steps, speedup? efficiency?
very loose constraints on everything else

Sounds a bit like the problem that afflicted the complexity theoretical view of PRAMs
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MapReduce MRC Model Criticism



Connecting MapReduce to Realistic Machine Models [San20]

PE 1 PEPE 2

memory
local 

memory
local 

memory
local 

p

...

network

bottleneck communication volume

internal work

≤ m̂

≤ m̂

≤ m̂

w

m

≤ ŵ

≤ ŵ

Θ

(
m
p

+ m̂ + log p
)

Θ

(
w
p

+ ŵ + log p
)
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MapReduce – MRC+ Model



Apply MRC+ Model to algorithms/problems previously studied for MRC. Are these still looking
good? Do they yield new PRAM, BSP, P2P algorithms? Other algorithms now look better?

Develop sth like MRC+ for Big Data Tools
with more functionality like
Spark [ZCF+10] or Thrill [BAJ+16]

Use the algorithms from [San20] to obtain more scalable MapReduce implementations.
Possibly further developed with equally scalable fault tolerance.

PEPE 1 PE PE

timeout

send

memory
local 

memory
local 

p

memory
local 

memory
local 

......

ji

...

network
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Open Problems



“The network is the computer” [Pel00, AW04, Ray13]

Count rounds of data exchange with all neighbors
Local Model: unbounded message lengths

Congest Model: O(log |V |) message lengths

Quite different from processing graphs G = (V ,E) on distributed-memory computers, usually
with p ≪ |V |

i e

h

c

g fd a

b
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Distributed Graph Algorithms



Iteratively select nodes with locally smallest (random) label.
Remove neighbors and incident edges.
whp O(log |V |) rounds

i e

h

c

g fd a

b

d ag

c e

f

i

hd ag

c e

f

i

b

h

b
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Example:
Luby’s Maximal Independent Set Algorithm [Lub86]



Clarify relation to realistic parallel machine models when processing large graphs, e.g., how to
emulate an algorithm in the Congest model on BSP?
How to deal with high-degree nodes?
Which distributed graph algorithms then translate into efficient parallel algorithms?
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Open Problem
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Hierarchy of thread groups with increasingly closer cooperation
Collective memory access patterns

Do we need a model for it?
Open problem (?)

Nvidia

Intel

Market Capitalization May 2024
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GPU



Differences to shared-memory CPUs is more quantitative than qualitative – more threads,
smaller caches
Not that different from a many-core CPU with powerful SIMD-units?
CUDA is more a programming model than a machine model (and proprietary)
Ideosyncrasies of warps not fitting to an asymptotic model
Moving target (and converging to CPU models?)

GPU CPU

computing L1/L2 cache L3 cache main memory
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Or not?



distributed-memory models for compute nodes

aCRQW PRAM on each GPU

broad-word/SIMD parallelism, constant factor things on warp level

...

network
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Model LEGO for GPU?



[Gru99, NC10, Kni96]

part
classicalpartquantum

qbits registers

memory

unitary
operations

measurement

setup & control

Have size of quantum registers as a parameter?

Very different: Quantum annealing – Assume a solver for an NP-hard problem like quadratic
unconstrained binary optimization (QUBO)
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Quantum Computing



Reversible computing
Private computations
Cellular automata [B+66]
Molecular computing
Neural processing
Peer-to-Peer networks and fault tolerance

x4

x3

x2

x1
Σ

Σ

Σ

Σ

Σ

Σ

Σ*

*

*

f (x, θ)

θ

x

outputhidden 1inputLayers:

θ

x1

x3

x2

biasw1 w2 w3

Σ
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More from the Zoo



The zoo is big

Many models have their point

But often specifics
do not matter

Tradeoff expressivity
versus simplicity

expressivity

si
m

p
li

ci
ty

memoryshared
distributed

BSP

BSP*

PEM
aPRAM

MRC

CGM

LogP

MRC+

PRAM

par−obliv.
networks

PEM+

LogGP
point2point

BSP+
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Conclusions



Classical complexity theory leads to rather coarse grained results.
Do we need fine-grained complexity of parallel algorithms?
For example, what about efficient algorithms with span O

(√
n
)
?

Asymptotics meets hardware design. The quantitative approach [HP17] was highly successful
but is hard to extrapolate.

The asymptotics of physical constraints
(energy consumption, cooling, wire delays, fault tolerance,. . . ) There was a lot of work on
VLSI in the 1980s [Ull84] but that only scratched the surface.

GPU, quantum, neural

Would superhuman AIs care about our abstractions?
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Big Open Problems



Implement O(log p) reduction using for the aCRQW model. Perhaps using CAS operations or
fetch-and-add.

PE index i ∈ {0, . . . , n − 1}
active := 1
for 0 ≤ k < ⌈log n⌉ do

(* avoid global barrier here *)
if active then

if bit k of i then
active := 0

else if i + 2k < n then
(* ensure that a[i + 2k ] contains the right subtree sum *)
a[i] := a[i] + a[i + 2k ]
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Exercise: Reduction on aCRQW



Analyze your favorite MRC algorithm using MRC+.
(simple examples: word-count, page-rank).

Sum over all MapReduce steps:

w Total work for µ, ρ

ŵ Maximal work for µ, ρ

m Total data volume for A ∪ B ∪ C ∪ D

m̂ Maximal object size in A ∪ B ∪ C ∪ D,
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Exercise: MRC → MRC+
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