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Abstract
Breadth-first Search (BFS) is one of the most important
graph processing subroutines, especially for computing
the unweighted distance. Many applications may require
running BFS from multiple sources. Sequentially, when
running BFS on a cluster of nearby vertices, a known
optimization is using bit-parallelism. Given a subset of
vertices of size k and the distance between any pair of
them is no more than d, BFS can be applied to all of
them in a total work of O(dm(k/w+1)), where w is the
length of a word in bits and m is the number of edges.
We will refer to this approach as cluster-BFS (C-
BFS). Such an approach has been studied and shown
effective both in theory and in practice in the sequential
setting. However, it remains unknown how this can be
combined with thread-level parallelism.

In this paper, we focus on designing efficient par-
allel C-BFS based on BFS to answer unweighted dis-
tance queries. Our solution combines the strengths of
bit-level parallelism and thread-level parallelism, and
achieves significant speedup over the plain sequential
solution. We also apply our algorithm to real-world ap-
plications. In particular, we identified another appli-
cation (landmark-labeling for the approximate distance
oracle) that can take advantage of parallel C-BFS. Un-
der the same memory budget, our new solution improves
accuracy and/or time on all the 18 tested graphs.

Artifact Availability: The source code and data

have been made available at https://doi.org/10.5281/

zenodo.13905461 and https://doi.org/10.5281/zenodo.

13909778.

1 Introduction
Breadth-First Search (BFS) is one of the most im-
portant graph processing subroutines. Given a graph
G = (V,E) and a vertex s ∈ V , BFS visits all vertices
in V in increasing order of (hop) distance to s. BFS
can be used for many purposes. One of the most com-
mon use scenarios for BFS is to compute the unweighted

∗The full version of the paper can be accessed at http:

//arxiv.org/abs/2410.17226
†University of California, Riverside.
‡Carnegie Mellon University.

distance from the source. In this paper, we focus on de-
signing efficient parallel approaches based on BFS to
answer unweighted distance queries. Throughout the
paper, we use n = |V | and m = |E|, and use “distance”
to refer to the hop distance on an unweighted graph.

Many applications may require running BFS from
multiple sources. Examples of this are using BFS
for low-diameter decomposition [30], all-pairs shortest
paths (APSP), or oracles for exact or approximate
APSP. A key observation is that bit-parallelism [16] can
be used effectively when running BFS on a cluster of
nearby vertices [1, 16]. Given a subset of vertices with
size k and the distance between any pair of them is
no more than d, BFS can be applied to all of them
in total O(dm(k/w + 1)) work (number of operations),
where w is the length of a word in bits and m is the
number of edges [16]. Since a machine word must
hold at least Ω(log n) bits to store a pointer, this
means w = Ω(log n). We will refer to this approach
as cluster-BFS (C-BFS), and present more details in
Sec. 3. Chan [16] used this idea to develop an all-
pair shortest-path algorithm that runs in O(mn/w)
work (when m = Ω(n log n log log log n)). In addition
to saving time, C-BFS also saves space: it only uses
O(d) words per w vertices instead of a word (or at
least enough bits to store a distance) per vertex as in
standard BFS. Akiba et al. [1] used this idea in the
exact two-hop distance oracle but only considered the
special case for d = 2 (a star-shaped cluster: a vertex
and its neighbors). We refer to this algorithm as the
AIY algorithm. Both of the previous papers focus on
the sequential setting.

While the C-BFS with bit-level parallelism has
shown to be effective in sequential settings, surprisingly,
we know of no previous work combining it with thread-
level parallelism. BFS is one of the most well-studied
parallel graph processing problems, and state-of-the-art
solutions have been highly optimized using techniques
such as direction optimizations [6, 38]. To be practical,
any C-BFS would have to compete with these. Our goal
is to develop an efficient C-BFS with high parallelism
such that it (1) achieves the same level of parallelism
as the standard parallel BFS, with additional benefits
by using clusters, (2) supports a clean interface that is
flexible for different parameter settings (i.e., varying d
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and k), and (3) facilitates various real-world applica-
tions. In this paper, we provide a systematic study of
parallel C-BFS and achieve all three goals above.

To achieve high performance, we design an efficient
parallel algorithm. Our algorithm is work-efficient (i.e.,
it has the same asymptotical work as the sequential
counterpart). It has the same span as regular parallel
BFS algorithms (e.g., [38]), which Õ(D) for graph
diameter D, and thus is best suited for small-diameter
graphs, such as social networks, computer networks,
or web graphs. Our algorithm uses the directional
optimization that has been shown to be useful for
parallel BFS. By doing this, our algorithm achieves the
strengths of both bit-level and thread-level parallelism:
it has high parallelism as in the state-of-the-art parallel
BFS algorithms and obtains additional performance
gain by using bit-level parallelism.

To achieve a flexible interface, we designed our
algorithm for general k and d, easily integrating into
various applications with user-defined parameters.

To understand how C-BFS can facilitate real-world
applications, we study two Distance Oracle (DO) tech-
niques that can benefit from C-BFS: the exact DO as
in [1] and the Landmark Labeling (LL) for an approx-
imate DO. As far as we know, our work is the first to
use C-BFS to accelerate LL.

We implemented our C-BFS algorithm and the two
applications. We compare our algorithm with multiple
baselines to study the performance gain in depth, and
test it on 18 graphs with various types and sizes on a 96-
core machine. Compared to standard sequential BFS,
our algorithm employs both bit-parallelism (on clusters)
and thread-level parallelism (along with optimizations
used in parallel BFS) to improve performance. In the
simplest setting where k = 64 and d = 2, the combi-
nation of them enables up to 1119× speedup (500× on
average) compared to the plain sequential BFS, where
bit-level and thread-level parallelism each contributes
about 20× speedup. Interestingly, by comparing with
the performance of existing work (Ligra [38], where only
thread-parallelism is used, and AIY [2], where only bit-
level parallelism is used), we observed that both bit-level
parallelism and thread-level parallelism and work very
well in synergy. Each of them still fully contributes to
the performance when the other is present, achieving
the same level of improvement as when used indepen-
dently (see Fig. 1). Therefore, we believe our work on
an efficient implementation combining thread-level and
bit-level parallelism fills the gap in the existing study of
both C-BFS and parallel BFS.

We also studied the performance of our C-BFS with
different parameters. Typically, k is set to be Θ(w), and
the work (and space) is proportional to d. Our result

+ bit-parallelism

22.4×

+ multithreaded
parallelism

27.0×

22.3×

18.5×

+ bit-parallelism

+ multithreaded
parallelism

Plain 
Sequential BFS 

31.96s

Sequential C-BFS 
[AIY’12]

1.43s

Parallel BFS  (Ligra) 
[ShunBlelloch’13]

1.18s

Our parallel 
C-BFS

0.064s

+bit-parallelism & thread-level parallelism

500×

Figure 1: Performance comparison with existing
work. We test the running time of BFSs from a cluster
of 64 vertices. The baselines are Ligra [38] that only uses
thread-level parallelism and AIY’12 [2] that only uses bit-
level parallelism. The numbers are geometric means across
18 graphs. Full results are shown in Tab. 2 and Fig. 3.

shows that the running time increases almost linearly
with value of d, especially when d is small. This explains
why existing work (e.g., [2]) tends to choose the smallest
d = 2 case in real-world applications.

Applying our algorithm also gives significant im-
provement to the aforementioned applications. For the
2-hop distance oracle, our parallel implementation out-
performs the sequential AIY algorithm [1] by 9–36×,
and can process much larger graphs than the AIY algo-
rithm. For landmark labeling (LL), with a fixed memory
budget, C-BFS improved regular LL in either accuracy
or preprocessing time on all 18 tested graphs, and im-
proved both on 14/18 graphs. This is due to the saving
in space allowing more landmarks to be used for C-BFS.
We observed that using d = 2 achieved better overall
performance in accuracy, time and space. Due to the
page limit, we present more results in our full version.

2 Preliminaries
Notations. Let G = (V,E) be an unweighted graph.
We use n = |V |, m = |E|, and use D to denote the
diameter of the graph. Let N(v) = {u ∈ V | (v, u) ∈
E} be the set of neighbors of vertex v ∈ V . In
directed graphs, N+(v) and N−(v) represent outgoing
and incoming neighbors, respectively. We use δ(u, v)
to denote the shortest distance between u and v. We
assume machine word size w = Ω(log n), such that the
vertex and edge IDs are within constant words. Let
S = {s1, s2, ..., sk} represent a cluster, where k is the
cluster size. Let d be the diameter (maximum distance
between any pair) of the cluster. We summarize the
notations in Tab. 1.
Computational Model. We use the binary fork-
join parallel model [8, 17], with work-span analysis [10,
21]. We assume a set of threads that access a shared
memory. A thread can fork two child threads to
work in parallel, and then waits. When both children
complete, the parent thread continues. A parallel for-
loop can be simulated by recursive forks in logarithmic

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited43

D
ow

nl
oa

de
d 

03
/1

9/
25

 to
 7

6.
17

4.
21

8.
23

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



G = (V,E) : the input graph. n = |V | and m = |E|.
S = {s1, ..., sk} : the source cluster for the BFS.

k : the cluster size, i.e., k = |S|.
d : the diameter of the cluster.

w : the length of a word in bits. w = Ω(n).

D : the diameter of the graph.

δ(u, v) : the shortest distance between u and v.

Table 1: Notations in the paper.

levels. The work of an algorithm is the total number
of instructions, and the span is the length of the
longest sequence of dependent instructions. We can
execute the computation using a randomized work-
stealing scheduler [10, 20].

We assume two unit-cost atomic operations.
compare and swap(p, vold , vnew ) atomically reads the
memory location pointed to by p, and writes value vnew
to it if the current value is vold . It returns true if it
succeeds and false otherwise. Fetch And Or(p, vnew )
atomically reads the memory location pointed to by p,
takes the bitwise Or operation with value vnew , and
stores the results back. It returns true if vnew success-
fully sets any bit stored in p to be 1, and false otherwise.
Most machines directly support these instructions.
Parallel BFS. We briefly review parallel BFS,
because it is one of our baselines, and some of the
concepts are also used in our cluster-BFS. Parallel BFS
starts from a single source s ∈ V . The algorithm
maintains a frontier of vertices to explore in each
round, starting from the source, and finishes in at most
D rounds. In round i, the algorithm processes (visits
their neighbors) of the current frontier Fi, and puts all
their (unvisited) neighbors in the next frontier Fi+1. If
multiple vertices in Fi attempt to add the same vertex
to Fi+1, a compare and swap is used to guarantee
that only one will succeed.

One widely-used optimization for parallel BFS is
directional optimization [6, 38]. At a high level, when
the frontier size |Fi| is large, the algorithm will not
process Fi, but instead visit each unprocessed vertex v,
and determine if v has an incoming neighbor in Fi. If so,
v will be put in Fi+1. Such an optimization is observed
to be effective, especially on small-diameter graphs. We
present more details in our full version paper.

3 Parallel Cluster-BFS
Cluster-BFS (C-BFS) runs BFS from a cluster of
sources S ⊆ V . If the sources have diameter d (max-
imum distance between any pair), then all distances
from S to any vertex v ∈ V will differ by at most d.
This means that if we run a set of BFSs from S, syn-

chronously, every v ∈ V will appear in at most d+1 con-
secutive frontiers. Cluster-BFS takes advantage of this
by representing all the sources in S that can visit a given
vertex, on a given round, as a vector of booleans (bits).
In this way, each vertex will be visited at most d+1 times
instead of |S| times if all searches are performed sepa-
rately. More details are described in Sec. 3.1. Impor-
tantly, if the bit-vector fits in O(1) words, the distances
of all |S| sources can be handled (propagated from a
vertex in the current frontier to a neighbor) with O(1)
bitwise logical operations. Since a machine word must
hold at least Ω(log n) bits (so it can represent a pointer),
this means the algorithm can save a factor of Ω(log n/d)
work.

It appears that Chan first described this idea [16],
but he did not go into any details of the implementation,
but just saying that this is possible. Akiba et al. [1]
later showed a concrete implementation based on this
idea, with the limitations that it is sequential and
only works on the cluster of a star with d = 2
(a center vertex and its neighbors). To the best of
our knowledge, there has been no previous work on
developing a parallel implementation of the cluster-BFS
algorithm. Indeed it is challenging to achieve high
performance given how BFS has been widely studied
with numerous optimizations both sequentially and in
parallel. In this paper, we propose our algorithm, given
as Alg. 1, which is an efficient parallel cluster-BFS
implementation with a general interface and low coding
effort. In the following sections, we will first introduce
the bitwise representation to maintain the distances
in cluster-BFS and then give our parallel cluster-BFS
algorithm.

3.1 Cluster Distance Representations

Given a set S of source vertices with diameter d, cluster-
BFS computes a compact representation of the shortest
distance from every source in S to every vertex in V .
The idea of cluster-BFS is based on the following fact.

Fact 3.1. On an unweighted graph, if the distance
betweeen vertex s1 and s2 is d, then for any vertex
v ∈ V , |δ(s1, v)− δ(s2, v)| ≤ d.

For example, if s1 and s2 are neighbors, the dis-
tances from a vertex v to them can differ by at most 1.
We can further extend Fact 3.1 to Cor. 3.1, which says
if a cluster of vertices S has diameter d, the distances
from v to vertices in S differ by at most d.

Corollary 3.1. On an unweighted graph, given a set
S of vertices with diameter no more than d, for any
vertex v ∈ V , we have

max
s∈S

δ(s, v)−min
s∈S

δ(s, v) ≤ d

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited44

D
ow

nl
oa

de
d 

03
/1

9/
25

 to
 7

6.
17

4.
21

8.
23

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A
B

CD
E F

Input graph

Batch Sources

Batch sources A B C D
Bitwise vector 1 1 1 1

Δ! 𝑆![0] 𝑆![1] 𝑆![2]
0 1000 0111 0000

0 0100 1010 0001

0 0010 1100 0001

0 0001 1000 0110

1 1000 0111 0000

1 0100 1010 0001

A

B

C

D

E

F

{𝐵} {𝐴, 𝐶} {𝐷}
Figure 2: Illustration of bitwise representation. The
batch set S is {A,B,C,D}. 4-bit bit-subsets are used to
represent subsets of S. ∆v is the smallest shortest distance
from any vertex in S to v. The subset Sv[i] is defined as
{s ∈ S|δ(s, v) = ∆v + i}.

Therefore, for each vertex v, we can classify the
sources in S by their distances to v. Let ∆v =
mins∈S δ(s, v) be the smallest distance from any source
in S to v. According to Cor. 3.1, the distance between
v and any s ∈ S must be in range [∆v,∆v + d]. This
divides all vertices in S in d+ 1 different subsets based
on their distances to v. Let Sv[i] be the subset of sources
in S that has a distance to v as ∆v + i. More formally,

Sv[i] = {s ∈ S | δ(s, v) = ∆v + i}
Then for a vertex v, the distances between v and all
sources in S can be represented by the (d + 2)-tuple
〈Sv[0..d],∆v〉, which we call the cluster distance vector
of v to S.

Note that if |S| = w, we can use a one word bit-
vector to represent any subset of S′ ⊆ S: bit i is 1
iff. the i-th element in S is also in S′. We call such
a representation of a subset of S a bit-subset. In this
way, a cluster distance vector only takes d+ 1 words for
bit-subsets and one byte to store the shortest distances
from v to |S| sources (assuming D < 256).

An illustration for the bit-subset and cluster dis-
tance vector is shown in Fig. 2. In this example, S is
the set {A,B,C,D}, and the diameter of the subgraph
is d = 2. We need subsets Sv[0..2] for each vertex v,
which are represented by the bit-subsets, each with four
bits. A to D are represented by the four bits from left to
right. From the cluster distance vector, we can recover
the shortest distance from all the sources s ∈ S to each
vertex v ∈ V by the fact that each source in Sv[i] has
distance ∆v + i to v. For example, for vertex F , SF [1] is
1010, which represents the subset {A,C}, we can infer
δ(B,A) = δ(B,C) = ∆F + 1 = 2.

The main idea of cluster-BFS is to use bitwise oper-
ations on bit-subsets to quickly compute the union/in-
tersection of the sets, allowing us to use the cluster dis-
tance vector of v to compute the cluster distance vectors
of its neighbor u in constant time. In the following, we
elaborate on our parallel cluster-BFS algorithm.

Algorithm 1: Cluster-BFS search from S

Input:
A graph G = (V,E), a cluster S ⊆ V with diameter d
Output:
cluster distance vectors 〈Sv[0..d],∆v〉 for all v ∈ V .
Maintains:
i: the current round number, initialized to 0
Sseen[·], Snext[·]: array of bit-subset for each v ∈ V
r[v]: the lastest round v is in the frontier
Fi: frontier vertices in round i
// Initialization

1 ParallelForEach v ∈ V do
2 Sseen[v]← ∅, Snext[v]← ∅
3 ∆v ←∞
4 r[v]←∞
5 for s ∈ S do Sseen[s]← {s}
6 i← 0
7 F0 ← S

// Traversing
8 while Fi 6= ∅ do
9 ParallelForEach u ∈ Fi do

10 Snew ← Snext[u] \ Sseen[u]
11 if ∆u =∞ then ∆u ← i
12 Su[i−∆u]← Snew

13 Sseen[u]← Sseen[u] ∪ Snew

14 ParallelForEach u ∈ Fi do
15 ParallelForEach v ∈ N(u) and i−∆v < d do
16 if Fetch And Or(Snext[v], Sseen[u])
17 if compare and swap(r[v], r[v], i)
18 Fi+1 ← Fi+1 ∪ {v}
19 i← i+ 1

20 return 〈Sv[1..d],∆v〉 for all v ∈ V

3.2 Our Parallel Algorithm

In this section, we introduce our parallel algorithm to
compute the cluster distance vector for all vertices given
a source cluster S, which is 〈Sv[0..d],∆v〉 for all v ∈ V .
The pseudocode of our cluster-BFS is shown in Alg. 1.

Our cluster-BFS algorithm is based on the following
fact: if u and v are neighbors and there is a path from
a source s ∈ S to u with length i − 1, then there must
exist a path from s to v with length i. In round i, u
records all the sources in S that reach it in round i by a
bit-subset. When u visits its neighbor v, u propagates
this bit-subset to v by taking a bitwise Or operation
with the bit-subset representing the vertices reaching v
in round i+1 (Alg. 1: line 16). According to Cor. 3.1, all
the vertices in S will visit v at least once during round
∆v to round ∆v +d; in other words, all the vertices will
be put into the frontier for d + 1 times. Therefore, we
need to record the number of times v has been put in
the frontier. When v has been put in the frontier d+ 1
times, since all sources in S must have already visited
v, we do not need to process v anymore. Otherwise, we
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will process v and put it to the next frontier since other
sources in S may visit v in the future.

In our algorithm, we use a boolean array Sseen[·] to
store whether a vertex has been visited in all previous
rounds by any sources in S, and Snext[v] includes the
vertex if it is also in the current frontier (i.e., visited
by any vertex in the current round). We denote ∆v as
the first round that any vertex from S touches vertex v.
Alg. 1 has two stages: initialization and traversing.
Initialization This step is relatively simple. We ini-
tialize the arrays of Sseen[·], Snext[v], and ∆v. We use
another, array r[·], to avoid duplication of vertices in
the frontier. Later in the traversing stage, when mul-
tiple vertices want to add v to the next frontier at
the same time, only one can successfully set r[v] to
the current round number by atomic operation com-
pare and swap (line 17), and the successful vertex will
put v to the next frontier.
Traversing At the beginning, the algorithm puts all
the sources s ∈ S into the first frontier F0. Then, we
visit all vertices by frontiers. In each round, we process
frontiers in two stages, where the first stage processes
vertices and the second stage processes edges. In the
first stage (line 9 to line 13), we first compute the sources
that newly visited u by Snew ← Snext[u] \ Sseen[u]
(line 10). Note that the bit-subset Snew contains
sources whose distances are i, which is also Su[i −∆u]
(line 12). Then we update Sseen[u] to include newly
visited vertices (line 13), and set ∆u to the current
round number if it has not been set yet (line 11). In the
second stage (line 14 to line 18), we process the neighbor
vertices of the current frontier that have not been visited
for d times already (line 15). For an edge from u ∈ Fi

to its neighbor v, we propagate the sources seen so far
by u, Sseen[u], to v (line 16). In general, if any source
s ∈ S visited u in the previous round, s should also
visit v in this round, and should be included in the
Snext[v] for v in this round. If the Snext[v] is changed,
which means there are new sources visiting v, v should
be added to the next frontier. To avoid duplication in
the next frontier, only the one that can successfully set
r[v] to i (line 17) by compare and swap will put v to
the next frontier. Note that we can further benefit from
the directional optimization that is commonly used in
parallel BFS. Additional details about the directional
optimization are given in our full version paper.

The efficiency of the algorithm relies on using bit-
operations to compute the union and difference of two
bit-subsets, stated below.

Lemma 3.1. Given the bit-subset subsets S1 and S2

of a set S with size k, we can compute the bit-subset
representation of S1 ∪ S2, S1 \ S2 in O(k/w + 1) work
and O(log(k/w) + 1) span, where w is the word length.

Proof. A bit-subset with k bits needs dk/we words.
These dk/we words can be processed in parallel. With
the constant cost for bitwise or/not operations for a
single word, the work and span for S1 ∪ S2, S1 \ S2 are
O(k/w + 1) and O(log(k/w) + 1).

We now show the cost analysis of the cluster-BFS
algorithm.

Theorem 3.1. Given a set S of k vertices with diam-
eter d, we can compute the cluster distance vector from
S to every vertex in V in O(dm(k/w + 1)) work and
O((D + d) log n) span.

Proof. We will analyze the work and span for the traver-
sal stage, which dominates the cost of the initialization
stage. The traversal consists of two phases: the first
phase processes vertices in the frontier, and the second
phase processes edges from the frontier. The cost of
processing a single edge and a vertex is asymptotically
the same, as it involves applying a constant number of
set operations, which results in O(k/w + 1) work and
O(log(k/w)+1) span, as described in Lem. 3.1. Assum-
ing n < m, the cost of traversal is primarily determined
by edge processing. Therefore, the rest of the proof will
focus on analyzing the cost of edge processing.

For the work, since each vertex is in the frontier for
at most d times, each edge is processed at most d times,
leading to a total work of O(dm(k/w + 1)). For the
span, recall that D is the diameter of the graph, and
there are at most D + d rounds in the traversal stage.
The span for each round is O(log(k/w)+1+log n), which
accounts for the cost of generating O(m) parallel tasks
(costing O(log n) in the binary fork-join model) and the
cost of processing a single edge (costing O(log(k/w)+1)
as shown in Lem. 3.1). Since k/w is smaller than n, the
span for each round simplifies to O(log n). Thus, the
total span for the D + d rounds of the traversal stage
is O((D+ d) log n). Therefore, the total work and span
for our parallel cluster-BFS are O(dm(k/w + 1)) and
O((D + d) log n), respectively.

If we take k = Θ(w), such that each bit-subset fits
within a constant number of words, the work simplifies
to O(dm) and the span remains O((D+d) log n), which
matches the work and span of a single BFS. Since
w = Ω(log n), this means that we can compute O(log n)
more BFSs with asymptotically the same cost.

4 Applications
In this section, we show two applications that can ben-
efit from our new parallel Cluster-BFS algorithm. Both
applications are distance oracles (DO) for unweighted
graphs. A distance oracle (DO) is an index designed

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited46

D
ow

nl
oa

de
d 

03
/1

9/
25

 to
 7

6.
17

4.
21

8.
23

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



to answer the shortest distances between two vertices on
a graph. Although such a query can always be answered
by computing the distance on the fly (e.g., running a
BFS from one of the query vertices), this can be ineffi-
cient for applications requiring low latency or requesting
multiple queries. A distance oracle aims to store infor-
mation generated during preprocessing to accelerate the
distance queries.

From the perspective of accuracy, distance ora-
cles can be classified into approximate distance oracles
(ADO) and exact distance oracles (EDO). ADOs may
not answer the accurate distance but are cheaper in pre-
processing time, query time, and index space, and thus
scale to large graphs. EDOs always give the exact dis-
tance but can be more expensive to compute. Therefore,
EDOs are usually used in applications that are on small
graphs but more sensitive to accuracy. In this section,
we will introduce how to apply our cluster-BFS to the
two existing distance oracles: a 2-hop labeling-based
EDO and a landmark labeling-based ADO. Since both
applications work on undirected graphs, we assume the
graph to be undirected in this section. Our cluster-BFS
algorithm works for general directed graphs.

4.1 An EDO based on 2-Hop Labeling

Here, we consider the EDO constructed by Akiba et
al. [2], called 2-hop labeling, and we apply the idea of
C-BFS to this algorithm. Their original algorithm is
sequential, and we refer to it as the AIY algorithm.
We can replace the component for 2-hop labeling in
their algorithm with our parallel C-BFS to achieve
better performance. For completeness, we describe their
algorithm in the full version paper. In the experiments,
we compared our parallel C-BFS with the component of
C-BFS in their sequential code.We also parallelized the
entire algorithm for 2-hop labeling using our parallel C-
BFS, and present a comparison in our full version paper.

4.2 An ADO based on Landmark Labeling

In this paper, we mainly focus on this application
that can benefit from C-BFS, which we believe is
new. The application is an ADO based on landmark
labeling [22, 32, 39, 42, 43]. As mentioned, ADOs
sacrifice accuracy to get lower running time and index
space. Here, as is common, we assume a one-sided error,
such that the distance reported by the ADO cannot be
smaller than the actual distance. To measure the loss
in accuracy, for a distance query on u, v ∈ V , we use
distortion ψ(u, v) as the ratio between the answer from
an ADO (denoted as query(u, v)) over true distance
δ(u, v), i.e., ψ = query(u, v)/δ(u, v). We define the
distortion of an ADO as the average distortion over all

Algorithm 2: Framework of Landmark Labeling

1 The algorithm maintains L[·][·] as the index with size
n× |S|. L[v][i] is the distance between vertex v and
landmark hi, initialized as ∞

2 Function Construct Index(G,H) // G = (V,E)
// Each hi ∈ H is a vertex in the plain LL, and is a

cluster in C-BFS-based LL
3 for hi ∈ H do

// In our algorithm, we replace BFS with C-BFS
4 t[1..n]← BFS(G, hi)
5 foreach v ∈ V do L[v][i]← t[v]

6 return L

7 Function Query(u, v)
8 ans←∞ // the answer of the query
9 for i← 0 to |H| − 1 do

// Our algorithm computes the shortest distance
via all vertices in all clusters

10 dis ← L[u][i] + L[v][i]
11 ans ← min(ans, dis)

12 return ans

pairs. As ψ is always greater than 1, for simplicity, we
use ε to describe the distortion, where 1 + ε = ψ.

Landmark labeling (LL) is one of the widely-used
approaches of ADOs and probably the simplest. The ba-
sic idea is to select a subset H of vertices as landmarks,
and precompute the distances between each landmark
h ∈ H and all the vertices u ∈ V . When the distance
between two vertices, u and v, is queried, query(u, v)
answers the minimum δ(u, h)+δ(h, v) over all the land-
marks h ∈ H as an estimation. We show the high-level
idea of LL in Alg. 2.

Generally, the distortion of a query depends on how
far the actual shortest paths are from their nearest
landmark. If the actual shortest paths contain any
landmark vertex, the query answer is equal to the
true distance. Therefore, adding more landmarks can
decrease the distortion, but it also needs more space and
time to store and compute the index. In this paper, we
propose to use C-BFS to optimize LL. In particular, we
select clusters of vertices as landmarks instead of single
vertices. As discussed, a C-BFS on a cluster of size
O(log n) has costs (both time and space) asymptotically
the same as running BFS on one vertex. In this way, we
can select w times more landmarks with asymptotically
the same cost as the plain LL. We note that the quality
of the w landmarks in one cluster may not be as
good as choosing them independently, since they are
highly correlated. However, we experimentally observe
that with the same memory limit, using cluster-BFS
in landmark LL significantly improves the performance
both in distortion and preprocessing time (see Sec. 5.3).

To apply C-BFS to LL, we need two subroutines:
1) selecting landmarks in clusters with low distortion,
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and 2) answering the queries from the cluster distance
vectors computed by C-BFS.
Selecting Landmarks in Clusters. The landmark
selection is crucial in LL as it affects the query qual-
ity. A typical way is to prioritize vertices with high
degrees [1, 26, 31]. We also employ this approach. In
this step, we aim to identify clusters with a specified
size k = w and diameter d. Within these constraints,
the selection of landmarks should prioritize vertices with
higher degrees. To find a cluster, we first identify the
vertex with the highest degree. Among all its bd/2c-
hop neighbors, we then select k − 1 additional vertices
with the highest degrees. For instance, if k = 64 and
d = 2, we select the vertex with the highest degree and
63 of its neighbors with the next highest degrees to cre-
ate the first cluster. Once we select a cluster, we will
mark all the vertices in the cluster, and will not select
them again. We repeat this process until we select r
clusters (giving rw landmarks in total). One can also
select landmarks using other heuristics [27, 31]. After
selecting clusters, we apply C-BFS to all selected clus-
ters using Alg. 1. By doing this, we obtain the cluster
distance vectors between each vertex and each cluster.
Answering Queries with Clustered Land-
marks. To extend the original landmark idea to work
with C-BFS, we need to show how to use the cluster
distance vectors to answer the queries. A query answers
the shortest distances between two vertices through
any landmark. When all landmarks are independent
vertices, query(u, v) returns the smallest δ(u, l) + δ(l, v)
over all landmark vertices l ∈ L. In our case, the
landmarks are grouped into clusters. Therefore, we
first compute, within each cluster S, the smallest value
δ(u, s) + δ(s, v) for all s ∈ S. Then we will take the
minimum among all clusters.

The problem boils down to finding δ(u, s) + δ(s, v)
for all sources s in a given cluster S. Recall that for
each cluster S, both vertices u and v have obtained
their cluster distance vector from C-BFS, denoted as
〈Su[0..d],∆u〉 and 〈Sv[0..d],∆v〉. The possible shortest
distances passing through S is in the range [∆u +
∆v,∆u+∆v+2d]. For two bit-subset, Su[i] and Sv[j], if
their intersection is not empty, it means there is a path
connecting u and v with distance ∆u+∆v+i+j passing
through any source vertex in the intersection. We check
the intersections from the lowest possible distances (e.g.,
Su[0] ∩ Sv[0]) to higher possible distances, until we
find a nonempty intersection, and return their distance
sum. The complexity of the query grows in a quadratic
manner as d grows. For the simplest case, d = 2, we
only need to check three intersections for each cluster
to get the answer.

We have shown another optimization, bidirectional

searching, for answering queries that can reduce dis-
tortion without much more overhead in querying time.
Since this optimization is independent to C-BFS itself,
due to the page limit, we put the description and exper-
iments in our full version paper.

5 Experiments
Setup. We run our experiments on a 96-core (192
hyperthreads) machine with four Intel Xeon Gold 6252
CPUs and 1.5 TB of main memory. We implemented
all algorithms in C++ using ParlayLib [7] for fork-join
parallelism and parallel primitives (e.g., sorting). We
use numactl -i all for parallel tests to interleave the
memory pages across CPUs in a round-robin fashion.

We tested 18 undirected graphs, which are either
social or web graphs with low diameters. Graph infor-
mation is given in Tab. 2. All graphs are from commonly
used open-source graph datasets [13, 14, 24, 36]. When
comparing the average running times or speedups across
all the graphs, we use the geometric mean.
Baseline Algorithms. We compare our algorithm
to two existing implementations: 1) Ligra, the parallel
BFS in the Ligra [38] library (only using thread-level
parallelism), and 2) AIY, which is the C-BFS compo-
nent from Akiba et al. [2] (sequential, only using bit-
level parallelism). We also compared AIY for the 2-hop
distance oracle as one of the applications.

5.1 Microbenchmarks for Cluster-BFS

We start with testing our cluster-BFS (C-BFS) as a
building block. We first test the simplest case where
d = 2 and k = w = 64, where each cluster is a star (a
vertex and its up to 63 neighbors). We present a detailed
experimental study for this simple case because one of
our baselines, AIY, only supports sources as star-shaped
clusters. Another reason is that in previous work (as
well as new results in this paper), we observed that using
d = 2 gives the best overall performance for the two
applications discussed in this paper. We present some
studies about varying d at the end of this subsection.

Recall that our new C-BFS benefits from two as-
pects: 1) using bit-level parallelism with the idea of
clustering to compute the results from O(w) sources si-
multaneously, and 2) using thread-level parallelism and
known parallel techniques for optimizing BFS (e.g., di-
rectional optimization). In our test, we choose ten dif-
ferent clusters and report the average running time of
them, as well as the plain sequential BFS as the sim-
plest baseline. The plain sequential BFS processes all
64 sources independently, and the running time is in
the column “Seq-BFS time” in Tab. 2. Our final run-
ning time of C-BFS using all techniques is provided in
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Graph Information Seq-BFS Related Work Parallel C-BFS Self-Speedup

Dataset n m Notes Time(s) AIY Ligra Final Time(s) C-BFS Ligra

EP 75.9K 811K Epinions1 [3] 0.18 20.6× 4.02× 102× 0.002 4.39× 9.44×
SLDT 77.4K 938K Slashdot [25] 0.21 18.8× 3.91× 94.1× 0.002 3.47× 9.55×
DBLP 317K 2.10M DBLP [44] 0.77 20.3× 6.22× 183× 0.004 10.2× 17.1×
YT 1.13M 5.98M com-youtube [44] 3.30 22.9× 17.8× 445× 0.007 20.6× 31.6×
SK 1.69M 22.2M skitter [15, 36] 6.56 21.0× 30.4× 496× 0.013 26.7× 33.1×
IN04 1.38M 27.6M in 2004 [13, 14] 4.08 20.9× 4.00× 171× 0.024 10.1× 17.8×
LJ 4.85M 85.7M soc-LiveJournal1 [3] 39.8 23.7× 61.8× 1017× 0.039 47.7× 53.9×
HW 1.07M 112M hollywood 2009 [14, 36] 18.7 20.9× 89.7× 928× 0.020 32.4× 48.7×
FBUU 58.8M 184M socfb-uci-uni [34, 36, 41] 268 32.0× 49.6× 973× 0.276 54.4× 52.8×
FBKN 59.2M 185M socfb-konect [34, 36, 41] 176 27.9× 38.8× 712× 0.247 53.1× 51.8×
OK 3.07M 234M com-orkut [44] 61.6 19.8× 102× 1119× 0.055 49.0× 65.4×
INDO 7.41M 301M indochina [11, 13, 36] 38.8 21.9× 12.4× 452× 0.086 25.7× 35.9×
EU 11.3M 521M eu-2015-host [12–14] 119 23.9× 26.6× 821× 0.145 18.5× 41.3×
UK 18.5M 523M uk-2002 [13, 14] 91.8 22.7× 30.7× 687× 0.134 42.1× 46.7×
AR 22.7M 1.11B arabic [13, 14] 147 22.5× 10.7× 461× 0.319 18.0× 33.8×
TW 41.7M 2.41B Twitter [23] 861 20.6× 157× 856× 1.006 56.3× 60.2×
FT 65.6M 3.61B Friendster [44] 2084 20.4× 187× 813× 2.563 59.4× 64.6×
SD 89.2M 3.88B sd arc [29] 1898 25.0× 80.3× 945× 2.008 55.7× 62.5×

GeoMean 32.0 22.4× 27.0× 500× 0.064 24.8× 35.4×
Table 2: Tested graphs and microbenchmarks on different BFS algorithms from a cluster of vertices
with size 64. The numbers followed by ‘×’ are speedups, higher is better. Others are running time, lower is better.
The columns “AIY”, “Ligra” in related work and “Final” show the speedup over the “Seq-BFS”. “AIY” is referred to
sequential C-BFS from [1], “Ligra” is referred to parallel single BFS [38], and “Final” is referred to our parallel C-BFS.
The “self-speedup” is the speedup running the algorithm in parallel over running it in sequential.
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Figure 3: Speedup of parallel Ligra BFSs and parallel C-BFS over the standard sequential BFS on cluster
with size 64. y-axis is the speedup over sequential regular BFS in log-scale, higher is better. Each group of bars represents
a graph, except the last group, which represents the average across all graphs. The numbers on the bar are the speedup
of parallel algorithms over the standard sequential algorithm.

the column “Par-Time (s)” in Tab. 2. To evaluate the
performance gain by both techniques, we compared C-
BFS with both Ligra and AIY. AIY only supports C-
BFS on star-shaped clusters. The column “AIY” and
“Ligra” in Tab. 2 provide the speedups over the plain se-
quential BFS. To better illustrate the results, we show
the speedups relative to the plain version “Seq-BFS”
in Fig. 3. Essentially, the column “AIY” means the
speedup that can be achieved by applying bit-level par-
allelism on a cluster-BFS in the sequential setting. Sim-
ilarly, the column “Ligra” provides the speedup that can
be achieved by applying thread-level parallelism for run-
ning k = 64 regular (non-cluster) BFS.

As shown in the column “AIY”, using clusters
and bit-parallelism gets up to 18.8–32.0× improvement,
which is uniform on different graphs. Note that here, we
have k = 64 sources, so the maximum speedup can be
64×. Since C-BFS is more complicated than the plain
BFS, there are some constant overheads, resulting in an

average 22.4× speedup in a sequential setting.
For applying thread-level parallelism, the improve-

ment on different graphs varies greatly, from 3.91× (on
smallest graphs) to up to 187× on a 96-core machine
with hyperthreads. The benefit on certain graphs (e.g.,
OK, TW, and FT) is significant, which is over 100×.
One reason for the difference in improvement is the
directional optimization. On some dense graphs, the
backward step can be applied across many of the rounds
and thus save significant work (see our full version pa-
per for more details). Another reason is that there is
more parallelism available on larger graphs. This is
consistent with the observations in prior work [6, 38].
On average, effectively utilizing parallelism gives 27.0×
speedup over plain sequential BFS.

The columns “Par-Time(s)” and “Final” show our
parallel C-BFS running time and overall improvement
over “Seq-BFS”. Our algorithm combines the strengths
of both bit-level and thread-level parallelism. Our so-
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Figure 4: The scalability curve on different number
of processors for C-BFS. The y-axis is the self speedup.
The C-BFS running on one core is always 1. The x-axis is the
number of cores. 96h represents 96 cores with hyperthreads.

lution is always better than any of the baselines. Com-
pared to the plain sequential baseline, the improvement
is 94.1–1119×, and 500× on average.

For comparing the techniques and improvements of
all baselines, we show a summary figure in Fig. 1. The
time and speedup numbers are average on all tested
graphs. Compared to Ligra, our algorithm improves the
performance by 18.5× by utilizing clusters and bit-level
parallelism. Compared to AIY, our algorithm improves
the performance by 22.3× by utilizing thread-level
parallelism. This indicates that our combination of bit-
and thread-level parallelism works very well in synergy.
Each of them still (almost) fully contributes to the
performance, achieving the same level of improvement
as when used independently. Therefore, we believe our
work on an efficient implementation combining thread-
and bit-level parallelism fills the gap in the existing
study of both C-BFS and parallel BFS.
Self-relative Speedup and Scalability. In addition
to the aforementioned set of baselines, we further tested
C-BFS in the sequential setting to study the self-relative
speedup (in column “Self-Spd.”). The speedup numbers
are from 9.44× (on smallest graphs) to more than 40×
(on most large graphs). In summary, the self-speedup
of applying thread-level parallelism is 35.4× on average.

In addition to the overall self-relative speedup on 96
cores with hyperthreads, the scalability curve, as shown
in Fig. 4, presents the self-relative speedup results across
different number of cores. The curve demonstrates that
our algorithm achieves nearly linear speedup for most of
the graphs, indicating efficient parallel scalability. One
exception is the DBLP graph, which deviates from this
pattern due to its smaller size.
Influence of Cluster Diameter d in C-BFS. There
are no existing implementations supporting C-BFS with
general d. Recall that our C-BFS supports general
clusters with diameter d instead of star-shaped clusters
(a vertex and its neighbors, where d = 2). As shown
in Thm. 3.1, the work is proportional to d. We tested
different d from 2 to 6 on all the graphs. We choose
10 representative graphs and show the C-BFS running
time on clusters with different d in Fig. 5. The full

2 3 4 5 6
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Figure 5: The running time of C-BFS on various
cluster diameter d. The y-axis shows the relative running
time over d = 2. The x-axis shows the cluster diameter d.

running time is shown in Tab. 4 in Sec. 5.4. The running
time increases as d grows. A large d allows for better
flexibility for the shape of the cluster (the vertices can
be further from each other), but significantly affects the
performance. In Sec. 5.4, we will further show that using
a large d in LL incurs overhead in space and time, and
therefore, using d = 2 is almost always more effective in
applications.

5.2 2-Hop Distance Oracle

As mentioned in Sec. 4, we can replace the C-BFS in
Akiba et al. to accelerate their algorithm for an EDO.
Due to the page limit, we present the results in our full
version paper. To do this, we also need to parallelize
the other parts in their algorithm. In a nutshell, our
algorithm with thread-level parallelism accelerates their
algorithm by 9–36×, and can also process much larger
graphs than they can do.

5.3 Approximate Landmark Labeling

We now show how C-BFS can significantly improve the
landmark labeling (LL) approach with respect to both
running time and accuracy. In general, more landmarks
will lead to better accuracy for the distance queries,
as the landmarks are more likely to be on or close to
the shortest path between the queried vertices. Hence,
by using the clusters as landmarks, we can drastically
increase the number of landmarks by a factor of w
with O(d) overhead in time and space. For simplicity,
we start by considering clusters with diameter d = 2,
and later discuss clusters with d > 2. Following the
optimization mentioned in Sec. 4.2, we use each cluster
as a vertex and its w − 1 neighbors, and only store a
distance and d bit-subsets in the cluster distance vector.

We study the effectiveness of our approach by com-
paring our C-BFS-based LL with a standard solution
where each landmark is one vertex. We limit the total
memory usage for both algorithms to with a parameter
of t bytes per vertex for each graph, and construct an
LL-based index within this memory budget. For C-BFS,
memory usage per cluster includes the distance (1 byte)
and d bit-subsets (w/8 bytes each) per vertex, while the
memory usage for a regular LL is one byte (the distance)
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Figure 6: Tradeoffs between index size and distortion/construction time The x-axis is the memory limits per
vertex in bytes, and is in log-scale. The y-axis on the left shows the (1 + ε) distortion. The y-axis on the right shows the
preprocessing time. For both preprocessing time and distortion, lower is better. For the algorithms compared here, ‘plain’
is the regular LL, others are the C-BFS-based LL that choose clusters with size w as landmarks.

Index Time (s) ε (%)

Data Plain w = 64 w = 8 Plain w = 64 w = 8

EP 1.26 0.02 0.08 0.4 0.1 0.1

SLDT 1.15 0.02 0.07 0.7 0.1 0.1
DBLP 3.57 0.08 0.25 2.5 2.2 1.0

YT 9.22 0.23 0.59 0.3 0.3 0.1

SK 13.4 0.55 1.77 1.4 0.7 0.4
IN04 20.0 0.96 3.88 2.1 1.9 0.9
LJ 36.2 1.72 5.63 5.0 4.3 3.5

HW 12.4 0.93 4.10 10.6 5.6 7.1
FBUU 138 11.3 27.0 6.2 11.9 6.9
FBKN 127 10.5 24.9 6.2 11.9 6.9

OK 26.3 2.87 10.1 8.7 7.7 7.3
INDO 83.2 5.44 29.8 3.1 1.5 1.3
EU 87.3 7.01 34.9 2.6 1.3 1.7

UK 80.4 8.28 38.8 3.9 4.9 3.1
AR 148 17.6 86.8 2.6 4.0 2.2
TW 112 31.0 99.3 1.5 1.4 1.1
FT 251 61.1 193 16.8 12.4 12.8

SD 318 75.6 255 0.6 0.3 0.3

Table 3: The index construction time, (1+ε) distor-
tion, and query time for ADO based on landmark
labeling. The “Plain” is the plain LL algorithm that each
landmark is a single vertex. The “w = 64” and “w = 8”
C-BFS-based LL that landmarks are in clusters with size w.
The memory budget is 1024 bytes per vertex. For both in-
dex time and ε, lower is better.

per vertex. For example, C-BFS with w = 64 and d = 2
needs 17 bytes to store a cluster distance vector, and
C-BFS with w = 8 and d = 2 only needs 3 bytes. Thus,
the memory usage depends on the word size and num-
ber of clusters we choose. For fair comparisons, we fix
the memory usage per vertex in the index for different
baselines. With the same memory budget, a larger w
results in fewer (independent) clusters, typically allow-
ing faster preprocessing. As discussed in Sec. 4.2, the
landmarks in the same cluster are highly correlated to
each other, and may not bring the same benefit as inde-
pendent ones. Thus, a larger w may also result in less
accuracy.

In this experiment, we tested on different w from
{8, 16, 32, 64} and d = 2. In Tab. 3, we show the two
extremes of using w = 64 and w = 8. Due to page
limits, we put the full information of all tested w in our
full version paper.

We show the full result of using memory limit as
t = 1024 bytes per vertex in Tab. 3, where “plain”
refers to using simple parallel BFS, “w = 64” is to
use C-BFS with w = 64 (17 bytes per cluster), and
“w = 8” is C-BFS with w = 8 (3 bytes per cluster).
With the memory limit of 1024 bytes per vertex, we
can choose 1024 landmarks for regular LL, 341 clusters
for CC8, or 60 clusters for CC64. For regular LL, each
landmarks are chosen based on prioritizing the high-
degree vertices. We compare the index time and the
error ε shown in percentage. It means that the ADO
has (1 + ε) distortion (defined in Sec. 4.2). We take
the average of 100,000 pairs to estimate the error on all
the graphs, except for the largest two graphs FT and
SD. We only compute the distance of 10,000 pairs on
these two graphs, since generating the ground truth is
expensive on large graphs.

On all 18 tested graphs, C-BFS with w = 64 always
gives a lower running time. When w = 8, the running
time is 2.4–5.5× higher than w = 64, but still mostly
faster than the plain version. With the same memory
budget, w = 64 roughly processes 5.68× fewer clusters
than w = 8. Similarly, comparing w = 64 and the plain
version, the number of (clustered) BFSs performed by
w = 64 is 17× fewer than the number of (single) BFSs
by regular LL. The running time can be up to 53×
faster, but on average, it is around 10×—each C-BFS is
still more expensive than a single BFS, but the numbers
indicate that the overhead is small.

Regarding distortions, w = 8 generally gives better
accuracy than w = 64, but it can also be worse in
several instances. That is because w = 64 selects
more landmarks than w = 8 (3840 vs. 2728) but fewer
independent clusters (60 vs. 341). Therefore, the loss of
using fewer clusters may or may not be compensated by
more (correlated) landmarks. Empirically, the results
still suggest that w = 8 gives overall better accuracy, as
it is more accurate on 11 out of 18 tested graphs. Both
w = 8 and w = 64 are more accurate than the plain
version on at least 16 out of 18 graphs. This indicates
that the increased number of landmarks, although less
independent, still positively affects the accuracy on
most of the 18 scale-free networks we tested here.
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It is worth noting that the query times for all graphs
are similar, and we show the average (geometric mean)
query time at the last line in Tab. 3. This is because
the query time is completely determined by the number
of landmarks, instead of the graph size.

The experimental results suggest that, if the pri-
mary objective is to reduce preprocessing time, using
C-BFS with w = 64 will always give a more efficient
version than the plain version. The precision is also su-
perior in most cases. When achieving better precision
is the top priority, C-BFS with a smaller w can signif-
icantly reduce the distortion. When using w = 8, the
distortion is almost always better than both w = 64 and
the plain version, and the running time also improves
over the plain version on most of the graphs.

We also show the trade-off between preprocessing
time and distortion in Fig. 6 on three representative
graphs, particularly including those that w = 8 and 64
may perform poorly on. We include results using w = 16
and w = 32, with different memory budgets (t bytes per
vertex, shown in the x-axis). In general, it is still true
that large w results in faster preprocessing but larger
distortion. The red line shows the baseline of regular
LL. For both preprocessing time and distortion, lower
is better. Overall, using w = 16 or w = 32 provides a
compromise for both time and distortion, and can be a
more stable choice across all graphs.

For both preprocessing time and distortion, using
C-BFS provides a significant improvement on almost
all graphs. This verifies the effectiveness of our C-BFS
to achieve a practical distance oracle.
C-BFS with Diameter d > 2. Unlike the (sequen-
tial) AIY algorithm that can only apply to d = 2 case
(a vertex and its neighbors), our C-BFS is general and
works for any given d. Hence, it is interesting to un-
derstand how the performance and quality are affected
by varying d. Note that larger d gives us flexibility in
selecting the sources. It can generally reduce the cor-
relations between the sources, and even sometimes en-
able a larger k if no vertices in the graph have large
degrees (although this is rare in the scale-free networks
tested in this paper). Therefore, we tested the time and
distortion of LL on clusters with larger d and present
the results in Sec. 5.4. The takeaway is that, although
larger d may provide higher source quality, the space
and time consumption are also linearly proportional to
d. Hence, given the same memory limit, choosing clus-
ters with d > 2 does not help with decreasing distortion
(other than the graph OK, where d = 3 improves the
distortion over d = 2 by 3%). However, generally, the
faster running time is due to fewer clusters that can be
selected for the same memory budget.

Data d = 2 d = 3 d = 4 d = 5 d = 6

EP 0.002 0.002 0.003 0.003 0.003

SLDT 0.002 0.002 0.002 0.002 0.003
DBLP 0.004 0.005 0.005 0.007 0.008

YT 0.007 0.011 0.012 0.014 0.015

SK 0.013 0.017 0.020 0.023 0.026
IN04 0.024 0.027 0.029 0.032 0.033

LJ 0.039 0.053 0.065 0.076 0.082
HW 0.020 0.028 0.037 0.042 0.045

FBUU 0.276 0.368 0.451 0.585 0.654

FBKN 0.247 0.318 0.388 0.501 0.564
OK 0.055 0.082 0.105 0.114 0.121

INDO 0.086 0.114 0.134 0.159 0.176

EU 0.145 0.195 0.239 0.284 0.290
UK 0.134 0.186 0.229 0.265 0.292

AR 0.319 0.420 0.485 0.581 0.647

TW 1.006 1.723 2.284 2.494 2.539
FT 2.563 4.412 5.880 6.594 6.815

SD 2.008 3.305 4.280 4.970 5.128

GeoMean 0.064 0.086 0.104 0.120 0.131

Table 4: The parallel C-BFS time (seconds) for one
cluster with size 64 on different cluster diameter d.

5.4 Further Study on the d > 2 Case in Approx-
imate Distance Oracle

Here, we provide additional information for the d >
2 case for the landmark labeling, and continue the
discussion from Sec. 5.3. Recall d is the diameter of
clusters. We first study its influence in C-BFS. Then,
we study the influence of d in the application Landmark
Labeling introduced in in Sec. 4.2.
The Performance of C-BFS on Different d. Ac-
cording to Thm. 3.1, the work of C-BFS is proportional
to d. In order to know how to choose proper d in differ-
ent applications, we need to first know how different d
affect the running time of C-BFS in practice. We tested
the running time of C-BFS with clusters of different di-
ameter d. The results are shown in Tab. 4. The running
time increases as d grows larger, as shown in Tab. 4,
and space usage (O(d) space to store the distances of a
cluster to a vertex) also increases. When applying C-
BFS to other applications, we need to weigh the benefits
brought by more general clusters and the overhead on
time and space costs. Tab. 4 provides a reference for
overhead on running time.
The Performance of Different d on Landmark
Labeling. Our C-BFS is the first implementation
of C-BFS that supports general clusters. It gives us
a chance to study the performance and quality of LL
for clusters with larger d. Clusters with larger d have
fewer correlations for vertices in the same cluster, but
the computational cost for C-BFS also increases. We
are interested in whether it is worth using clusters with
larger d in the LL application.

We show the full result of using memory limit as
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Construction Time (s) Distortion ε (%)

Data Plain d = 2 d = 3 d = 4 Plain d = 2 d = 3 d = 4

EP 1.26 0.03 0.02 0.02 0.4 0.1 0.2 0.2
SLDT 1.15 0.02 0.02 0.02 0.7 0.1 0.4 0.6

DBLP 3.57 0.09 0.07 0.06 2.5 2.2 3.4 4.0

YT 9.22 0.23 0.19 0.17 0.3 0.3 0.6 0.8
SK 13.4 0.58 0.41 0.37 1.4 0.7 1.5 2.1

IN04 20.0 1.06 0.70 0.58 2.1 1.9 2.4 2.6
LJ 36.2 1.79 1.41 1.26 5.0 4.3 5.5 6.0

HW 12.4 0.99 0.75 0.63 10.6 5.6 6.5 7.0

FBUU 138 11.7 9.31 8.26 6.2 11.9 13.4 15.9
FBKN 127 10.8 8.82 7.52 6.2 11.9 13.5 16.0

OK 26.3 3.05 2.65 2.32 8.7 7.7 7.5 7.6

INDO 83.2 6.09 3.92 3.40 3.1 1.5 2.2 2.6
EU 87.3 8.00 6.33 5.55 2.6 1.3 1.9 2.2

UK 80.4 9.06 6.63 5.90 3.9 4.9 5.3 5.6

AR 148 19.4 13.4 11.7 2.6 4.0 6.8 7.1
TW 112 31.0 27.8 23.9 1.5 1.4 1.5 1.8

FT 251 61.1 52.0 45.8 16.8 12.4 13.7 14.6
SD 318 75.6 61.2 53.1 0.6 0.3 0.8 0.9

Table 5: The Approximate Landmark Labeling Time
and Distortion for cluster with size 64 and memory
limits 1024 bytes per vertex on different cluster
diameter d.

t = 1024 bytes per vertex and word size w = 64 in
Tab. 5, where “plain” refers to using simple parallel BFS
(1 bytes per landmark), “d = 2” is to use C-BFS with
d = 2 (17 bytes per cluster), “d = 3” is C-BFS with
d = 3 (25 bytes per cluster) and “d = 4” is C-BFS
with d = 4 (33 bytes per cluster). With memory limits
1024 bytes per vertex, we can choose 1024 landmarks for
regular LL, 60 clusters for d = 2, 40 clusters for d = 3 ,
and 31 clusters for d = 4. Landmarks are chosen based
on prioritizing the high-degree vertices, similar to the
setting previously.

The construction time is reversely proportional to
d, since larger d leads to fewer sources and clusters.
However, for distortion, other than the graph OK, larger
d always leads to lower accuracy. For the graph OK, the
improvement is only about 3%. In conclusion, since for
distance oracles, generally the space usage and accuracy
are the most crucial—given the same memory budget,
choosing clusters from diameter d > 2 does not help
with accuracy on most graphs. However, since our C-
BFS algorithm is highly parallel and efficient, it provides
opportunities for researchers in the future to study other
applications on whether more general sources with d > 2
can be more effective than star-size ones with d = 2.

6 Related Work
This paper mainly focuses on scale-free (small-diameter)
networks, and we refer the audience to an excellent sur-
vey [4] of algorithms for large-diameter graphs (e.g.,
road networks). In this paper, we discuss the ap-
proaches based on landmark labeling, and here, we re-

view other approaches for distance queries. We first re-
view the approximate solutions. The concept of approx-
imate distance oracles (ADOs) was proposed by Thorup
and Zwick [40], and has later been theoretically studied
in dozens of papers. Practically, papers [18, 22, 31] dis-
cuss how to select the best “landmarks” for these type
of sketch-based solutions, and showed that degrees or
betweenesses are reasonable metrics. Other solutions
include embedding-based solutions [28, 33, 37, 46] (em-
bedding graph metric into other simpler ones such as
Euclidean space), tree-based approaches [9, 45], and
some recent attempts using deep learning [35]. Most
of these approaches are more complicated than the
landmark-based labeling mentioned in this paper.

Regarding the exact distance queries, Pruned Land-
mark Labeling (PLL) [1] is among the latest solutions
for scale-free networks. Li et al. [26] showed another im-
plementation, but they did not release their code, so we
cannot compare their running time with ours. Other
techniques, such as contraction hierarchies (CH) [19]
and transit nodes routing [5], focus more on large-
diameter graphs like road networks.

7 Conclusion
In this paper, we present parallel implementations for
cluster-BFS, which runs BFS from a cluster of vertices
with diameter d. Our algorithm is work-efficient in the-
ory, and also leads to high parallelism on low-diameter
graphs as we tested in the experiments. We employ both
bit-level and thread-level parallelism to optimize the
performance. Both of them lead to significant speedup.
Especially, we observed that bit-level and thread-level
parallelism work well in synergy. We also show that the
combination of the techniques also leads to performance
improvement in two applications in distance oracles in
multiple measurements of preprocessing time and accu-
racy, and allows our implementation to scale to much
larger graphs than a sequential algorithm. Besides, our
C-BFS is the first implementation that supports general
clusters with diameter d instead of star-shaped clusters,
which give us a chance to study the benifits and over-
head of choosing clusters with larger d in C-BFS and in
its applications.
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