
Parallel 𝑘d-tree with Batch Updates
ZIYANG MEN, University of California, Riverside, USA

ZHEQI SHEN, University of California, Riverside, USA

YAN GU, University of California, Riverside, USA

YIHAN SUN, University of California, Riverside, USA

The 𝑘d-tree is one of the most widely used data structures to manage multi-dimensional data. Due to the ever-

growing data volume, it is imperative to consider parallelism in 𝑘d-trees. However, we observed challenges in

existing parallel 𝑘d-tree implementations, for both constructions and updates.

The goal of this paper is to develop efficient in-memory 𝑘d-trees by supporting high parallelism and

cache-efficiency. We propose the Pkd-tree (Parallel 𝑘d-tree), a parallel 𝑘d-tree that is efficient both in theory

and in practice. The Pkd-tree supports parallel tree construction, batch update (insertion and deletion), and

various queries including 𝑘-nearest neighbor search, range query, and range count. We proved that our

algorithms have strong theoretical bounds in work (sequential time complexity), span (parallelism), and cache

complexity. Our key techniques include 1) an efficient construction algorithm that optimizes work, span, and

cache complexity simultaneously, and 2) reconstruction-based update algorithms that guarantee the tree to

be weight-balanced. With the new algorithmic insights and careful engineering effort, we achieved a highly

optimized implementation of the Pkd-tree.
We tested Pkd-tree with various synthetic and real-world datasets, including both uniform and highly

skewed data. We compare the Pkd-tree with state-of-the-art parallel 𝑘d-tree implementations. In all tests, with

better or competitive query performance, Pkd-tree is much faster in construction and updates consistently

than all baselines. We released our code.

CCS Concepts: • Theory of computation→ Shared memory algorithms.

Additional Key Words and Phrases: Parallel Algorithms, Parallel Trees, Spatial Partition Trees, 𝑘d-tree

ACM Reference Format:
Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2025. Parallel 𝑘d-tree with Batch Updates. Proc. ACM Manag.
Data 3, 1 (SIGMOD), Article 62 (February 2025), 26 pages. https://doi.org/10.1145/3709712

1 Introduction
The 𝑘d-tree is one of the most widely-used data structures for managing multi-dimensional data.

A 𝑘d-tree maintains a set of points in𝐷 dimensions
1
, and supports various queries such as 𝑘-nearest

neighbor (𝑘-NN), orthogonal range count and range report. Compared to other counterparts, the

𝑘d-tree has its unique advantages, such as linear space, simple algorithms, being comparison-based

(and thus resistant to skewed data), scaling to reasonably-large dimensions (being efficient up to

1
Based on the original terminology, 𝑘d-tree deals with 𝑘-dimensional data. To avoid overloading 𝑘 in different scenarios

such as the “𝑘-NN” query (i.e., finding 𝑘 nearest neighbors of a given point), we use 𝐷 as the number of dimensions in this

paper.

Authors’ Contact Information: Ziyang Men, zmen002@ucr.edu, University of California, Riverside, Riverside, California,

USA; Zheqi Shen, zshen055@ucr.edu, University of California, Riverside, Riverside, California, USA; Yan Gu, ygu@cs.ucr.edu,

University of California, Riverside, Riverside, California, USA; Yihan Sun, yihans@cs.ucr.edu, University of California,

Riverside, Riverside, California, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/2-ART62

https://doi.org/10.1145/3709712

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

HTTPS://ORCID.ORG/0000-0001-7290-690X
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0002-4392-4022
HTTPS://ORCID.ORG/0000-0002-3212-0934
https://doi.org/10.1145/3709712
https://orcid.org/0000-0001-7290-690X
https://orcid.org/
https://orcid.org/0000-0002-4392-4022
https://orcid.org/0000-0002-3212-0934
https://doi.org/10.1145/3709712

62:2 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

𝐷 ≈ 10) and supporting a wide range of query types. Due to these advantages, the 𝑘d-tree is the

choice of data structure in many applications. Indeed, after its invention by Bentley in 1975 [10],

𝑘d-tree has been widely used and cited by over ten thousand times across multiple areas such

as databases [22, 39, 43, 58], data science [29, 59, 64, 81, 90], machine learning [27, 55, 56, 75],

clustering algorithms [54, 57, 61, 73, 77], and computational geometry [20, 42, 60, 79].

Due to the ever-growing data volume, it is imperative to consider parallelism in 𝑘d-trees. For

instance, the North American region of OpenStreetMap [45] contains 1.29 billion nodes, and

building a 𝑘d-tree for this dataset on a single core using CGAL [82], a widely-adopted geometry

library, takes over 2000 seconds. However, we observe a significant gap between the wide usage of
𝑘d-trees, and a lack of high-performance parallel implementation of 𝑘d-trees for all three aspects

of construction, updates, and queries. Some existing parallel implementations (e.g. [70]) are static

and do not support updates. The two parallel libraries for dynamic 𝑘d-trees that we are aware of,

CGAL [82], and ParGeo [85] (which includes two 𝑘d-tree implementations Log-tree and BHL-tree),
both have difficulties scaling to today’s large-scale data size (see a summary of results in Tab. 1).

CGAL and the BHL-tree do not support parallel updates. Even in the sequential updates, they fully

rebuild the tree for rebalancing, which is inefficient. The Log-tree parallelizes updates using the
classic logarithmic method [2, 10, 68]. The logarithmic method avoids fully rebuilding the tree

upon update by maintaining 𝑂 (log𝑛) perfectly balanced trees with different sizes, such that an

update reorganizes the trees by merging some of them in parallel. Accordingly, a query processes

all 𝑂 (log𝑛) trees and combines the results, which can be significantly more expensive than it

on a single 𝑘d-tree. As shown in Tab. 1, the Log-tree, despite being faster on updates, can be up

to an order of magnitude slower than the BHL-tree or CGAL on 𝑘-NN queries. In addition, the

construction for these 𝑘d-trees is also much slower than the time reported in recent works of

other parallel tree structures, such as binary search trees [30, 80] and quad/octrees [14]
2
, indicating

significant space for improvements on the construction algorithm.

In this paper, we overcome the above challenges in existing work by proposing the
Pkd-tree (Parallel 𝒌d-tree), a parallel in-memory𝑘d-tree that is efficient both in theory and
in practice. Pkd-tree supports efficient construction, batch-update, and various query types. Our

algorithms have strong theoretical bounds in work (sequential time complexity), span (parallelism),

and cache complexity. Our key techniques include 1) an efficient construction algorithm that

optimizes work, span, and cache complexity simultaneously, and 2) reconstruction-based update

algorithms that guarantee the tree to be weight-balanced. With the new algorithmic insights and

careful engineering effort, we achieved a highly optimized implementation of the Pkd-tree.
Construction. Our first contribution is a new parallel algorithm to construct weight-balanced

𝑘d-trees, given in Sec. 3. To the best of our knowledge, this is the first 𝑘d-tree construction algorithm

with optimal 𝑂 (𝑛 log𝑛) work and 𝑂 ((𝑛/𝐵) log𝑀 𝑛) cache complexity, and polylogarithmic span,

all with high probability
3
, where 𝑛 is the tree size,𝑀 is the cache size, and 𝐵 is the cacheline size.

To achieve good bounds on all three metrics simultaneously, the algorithmic highlight here is to 1)

determine the splitting hyperplane using a carefully designed sampling scheme, and 2) a sieving
algorithm to partition all points into subspaces of 𝜆 levels in the 𝑘d-tree by one round of data
movement. By picking 𝜆 = Θ(log𝑀), we achieve strong theoretical bounds for the construction

algorithm and good performance in practice due to the saving of memory accesses.

Updates. The 𝑘d-tree differs from other classic trees and does not support rebalancing primitives

2
For example, the construction time of the parallel binary search tree reported in [80] is 28s on 𝑛 = 10

10
elements on a

similar machine, which is faster than all previous 𝑘d-tree implementations on 𝑛 = 10
9
shown in Tab. 1.

3
The work of a parallel algorithm is the total number of operations (i.e., sequential time complexity), and its span is the

longest dependence chain. All the terms here are formally defined in Sec. 2.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:3

Benchmark
Baselines Build

Batch Insert Batch Delete 10-NN Range Report
(109-2D) 0.01% 0.1% 1% 10% 0.01% 0.1% 1% 10% 107 queries 104 queries

Uniform

Ours 3.15 .004 .020 .104 .495 .004 .022 .121 .526 .381 .391

Log-tree 37.9 .008 .059 2.16 30.7 .436 .168 .396 3.01 2.96 2.62

BHL-tree 31.7 31.0 31.2 31.4 39.9 30.8 31.1 30.9 30.6 .487 2.06

CGAL 1147 1614 1562 1631 1660 .400 3.89 41.2 427 1.04 311

Varden

Ours 3.66 .002 .007 .055 .473 .002 .006 .049 .477 .172 .382

Log-tree 34.2 .008 .057 2.01 28.0 .799 .848 1.06 3.47 2.05 2.63

BHL-tree 30.2 29.1 29.2 29.4 37.3 29.3 29.2 29.0 28.0 .239 1.95

CGAL 429 867 867 849 836 .113 1.06 13.0 153 .511 296

Table 1. Running time (in seconds) for Pkd-tree and other baselines on 10
9 points in 2 dimensions.

Lower is better. “Log-tree”: the parallel 𝑘d-tree using logarithmic method from the ParGeo library [85].

“BHL-tree”: the single parallel𝑘d-tree from ParGeo library [85]. “CGAL”: the𝑘d-tree from theCGAL library [82].
“Varden”: a skewed distribution from [37]. “10-NN”: 10-nearest-neighbor queries on 10

7
points. “Range report”:

orthogonal range report queries on 10
4
rectangles, with output sizes in 10

4
–10

6
. Experiments are run on a

96-core machine. More details are in Sec. 6. The fastest time for each test is underlined.

for updates, such as overflow/underflow (as in B-trees), or rotations (as in binary search trees). Our

idea is to keep the tree weight-balanced, and use a lazy strategy that tolerates the difference of

sibling subtree sizes by a predefined and controllable weight-balancing factor of 𝛼 before invoking

rebalancing by locally reconstructing the affected subtrees. The idea of rebalancing via local

reconstruction was originally proposed by Overmars from early 80s, and has been studied in

the sequential setting [5, 19, 36, 65, 66]. However, it remained previously unknown about the

efficiency on parallelism and cache complexity. Interestingly, the efficiency of our update algorithm

is achieved by making use of our new construction algorithm—first, rebalancing the tree relies on

efficient reconstruction; second, both insertion and deletion use the sieving process in construction

as a subroutine to also achieve good cache complexity and parallelism. We present our update

algorithms and the cost analysis in Sec. 4.

Queries. Since the Pkd-tree remains as a single 𝑘d-tree, the same query algorithms for static

𝑘d-trees can directly work on Pkd-trees without any modifications. In Sec. 6, we will show that the

query performance for Pkd-trees is faster or as fast as existing solutions.

We implemented the Pkd-tree and conducted extensive experiments in Sec. 6. A short summary

is given in Tab. 1 on two datasets with 10
9
2D points. In a nutshell, Pkd-trees are much faster in all

aspects. For construction, the performance gain is from better cache complexity—data movement

can be greatly saved by constructing multiple levels in one round. Compared to the logarithmic

method (Log-tree), the Pkd-tree is 2.02–62.0× faster on insertion, 3.27–400× faster on deletion, and

6.71–11.9× faster on queries by avoiding keeping 𝑂 (log𝑛) trees. Compared to full reconstruction

on updates (BHL-tree and CGAL), the Pkd-tree is orders of magnitude faster on updates and has

better query performance. We show running time on real-world datasets, and in-depth experiments

with varying dimensions, query types and parameters, individual techniques, scalability, and more,

in Sec. 6. We believe that the Pkd-tree is the first 𝑘d-tree that is highly performant, parallel, and

dynamic. We release our code at [62]. More experiments and analysis are provided in the full

version paper [63].

2 Preliminaries
We present a table of notations used in this paper in Tab. 2. We use with high probability (whp)

in terms of 𝑛 to mean probability at least 1 − 𝑛−𝑐 for any constant 𝑐 > 0. With clear context, we

omit “in terms of 𝑛”. We use log𝑛 as a short term of log
2
(1 + 𝑛).

Computational Model.We analyze our algorithms using the work-span model in the classic

fork-join paradigm with binary-forking [8, 16, 21]. We assume multiple threads that share memory.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:4 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

𝑻 a (sub-)𝑘d-tree, also the set of points in the tree

𝝓 leaf wrap threshold (leaf size upper bound)

𝒌 required number of nearest neighbors in a query

𝝀 number of levels in a tree sketch (i.e., that are built at a time)

T tree skeleton at 𝑇 with maximum levels 𝜆

𝑷 input point set (for updates, 𝑃 is the batch to be updated)

𝑻 .lc left child of 𝑇 𝑻 .rc right child of 𝑇

𝒏 tree size 𝒎 batch size for batch updates

𝑫 number of dimensions 𝒅 a certain dimension

𝑺 samples from 𝑃 𝒔 size of the 𝑆

𝝈 oversampling rate 𝜶 balancing parameter

𝑴 small-memory (cache) size 𝑩 block (cacheline) size

Table 2. Notations used in this paper.

Each thread is a sequential RAM augmented with a fork instruction, which spawns two child

threads that run in parallel. The parent thread resumes execution upon the completion of both

child threads. A parallel for-loop can be simulated by a logarithmic number of steps of forking. A

computation can be viewed as a directed acyclic graph (DAG). Thework (𝑾) of a parallel algorithm

is the total number of operations within its DAG (aka. time complexity in the sequential setting),

and the span (𝑺) depicts the longest path in the DAG. Using a randomized work-stealing scheduler,

a computation with work𝑊 and span 𝑆 can be executed in𝑊 /𝜌 +𝑂 (𝑆) time whp (in𝑊) with 𝜌

processors [8, 21, 41].

We use the classic ideal-cache model [35] to measure the cost of memory accesses, which is

widely used to analyze the cache complexity of algorithms [6, 17, 18, 31]. In this model, the memory

is divided into two levels. The CPU is connected to the small-memory (aka. the cache) of finite size

𝑀 , which is connected to a large-memory (the main memory) of infinite size. Both memories are

organized as blocks with size 𝐵. The CPU can only access the data in small-memory with free cost,

and there is a unit cost to transfer one block from large-memory to small-memory, assuming the

optimal offline cache replacement policy. The cache complexity of an algorithm is number of block

transfers during the algorithm.

The ideal-cache model assumes optimal eviction strategy for theoretical analysis. It has been

shown that practical cache policies (e.g., LRU) enables the same asymptotic cache I/Os as the optimal

strategy [35, 78]. The ideal-cache model is only used for theoretical analysis. In our implementation,

we do not control the cache, so the optimal eviction strategy is guaranteed. In reality, the eviction

strategy is usually a combination of multiple strategies, considering more complicated components

such as set associativity, parallelism, and a few optimizations. However, the theoretical model is

still extremely widely used as a good estimation of the practice.

The 𝒌d-Tree. We study points in Euclidean space in 𝐷 dimensions, and the distance between two

points is their Euclidean distance. A partition hyperplane can be represented by a pair ⟨𝑑, 𝑥⟩, where
𝑑 (1 ≤ 𝑑 ≤ 𝐷) is the splitting dimension and 𝑥 ∈ R is the splitting coordinate. We refer to such

a pair 𝑠 as a splitter .
The 𝒌d-tree (𝑘-dimensional tree), is a spatial-partitioning binary tree data structure. To avoid

overloading the commonly-used parameter 𝑘 in 𝑘-NN query, we use 𝐷 to refer to the number

of dimensions of the dataset. Each interior (non-leaf) node in a 𝑘d-tree signifies an axis-aligned

splitting hyperplane ⟨𝑑, 𝑥⟩. Points to the left of the hyperplane (those with the 𝑑-th dimension

coordinates smaller than 𝑥) are stored in the left subtree and the remaining are in the right subtree.

Each subtree is split recursively until the number of points drops below a leaf wrap threshold

𝜙 (a small constant), where all the points are directly stored in a leaf. Common approaches for

choosing the dimension of the splitting hyperplane include cycling among the 𝐷 dimensions [10],

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:5

Step 1
Sample &
get skeleton

Step 2
Sieve points

Step 3
Recurse

Chunk 0 Chunk 1 Chunk 2
𝑃[] a b c d e f g h i

Bucket 0 2 3 1 2 1 0 3 1

𝑨 0 1 2 3

0 1 0 1 1

1 0 2 1 0

2 1 1 0 1

𝑩 0 1 2 3

0 0 2 5 7

1 1 2 6 8

2 1 4 7 8

Index 0 1 2 3 4 5 6 7 8
𝑃′[] a g d f i b e c h

C
h

u
n

k

C
h

u
n

k

Step 2.1 Count #points
in chunk 𝑖 and bucket 𝑗
in 𝐴[𝑖][𝑗]

Step 2.2 𝐵 = column-
major prefix sum of 𝐴

𝐵[𝑖][𝑗]: offset for
chunk 𝑖 in bucket 𝑗

Step 2.3 Reorder points

Bucket Bucket

𝐴[1][2] = 𝟏 : 𝟏 point in chunk 1 falls into bucket 2
𝐵 1 2 = 𝟔 : Points in chunk 1 going to bucket 2 start from index 6

Example:

0 2

1 3

Points Samples 3 Buckets

𝑥

𝑦

4

6

5
①

②

Indexes of the
four buckets:
0, 2, 5, 7 (first
row in 𝐵[])

… … … …

0 1 2 3
Sk

e
le

to
n

0

1

2
3

𝑥, 5

𝑦, 6 𝑦, 4

③ ③ ③ ③

Example: e (chunk 1, bucket 2) will be written to 𝑃’[] from index B[1][2]=6

Fig. 1. An illustration of our 𝑘d-tree construction algorithm, with a detailed overview on the sieving
step. In this example, we first sample seven points and construct the tree skeleton using the samples, dividing

the plane into four regions (buckets). Next, we sieve all points into the corresponding bucket. Concretely,

we divide the points 𝑃 into chunks of size 𝑙 = 3. All chunks are processed in parallel. For each chunk, we

count the number of points for every bucket in array 𝐴. We then compute the exclusive prefix sum of 𝐴 in

column-major order to get the offset matrix 𝐵. We then move all points from 𝑃 to 𝑃 ′ so that points within

each bucket are contiguous. Finally, we recursively construct each subtree (a bucket in 𝑃 ′) in parallel.

choosing the dimension with the widest stretch [34], etc. Pkd-tree also uses the widest dimension

as the cutting dimension. The cutting coordinate 𝑥 is usually the median of the points on the 𝑑-th

dimension, yielding two balanced subtrees. Given 𝑛 points in 𝐷 dimensions, a balanced 𝑘d-tree has

a height of log
2
𝑛 +𝑂 (1) and can be constructed in 𝑂 (𝑛 log𝑛) work using 𝑂 (𝑛) space.

The 𝑘d-tree can answer various types of queries. Since the Pkd-tree remains a single 𝑘d-tree, the

same query algorithms for classic 𝑘d-trees also work on Pkd-trees. In our experiments, we focus on

𝑘-NN queries (finding the 𝑘 nearest points to a query point), rectangle range report queries (reporting
all points within an axis-aligned bounding box) and rectangle range count queries (reporting the
number of points within an axis-aligned bounding box).

We use the (subtree) root pointer 𝑇 to denote a (sub-)𝑘d-tree. With clear context, we also

use 𝑇 to represent the set of all points in 𝑇 . Every interior node in 𝑇 maintains two pointers

𝑇 .lc and 𝑇 .rc to its left and right children, respectively. As we mentioned, Pkd-tree is weight-
balanced. Given the balancing parameter 𝛼 ∈ [0, 0.5], we say a 𝑘d-tree is (weight-)balanced if

0.5 − 𝛼 ≤ |𝑇 .lc |/|𝑇 | ≤ 0.5 + 𝛼 , and unbalanced otherwise. Essentially, this means that the two

subtrees can be off from perfectly balanced by a factor of 𝛼 .

3 Parallel Algorithm for Tree Construction
We start with our parallel 𝑘d-tree construction algorithm. Constructing a 𝑘d-tree requires

partitioning the points into nested sub-spaces recursively based on the median of the splitting

dimension. It directly implies a parallel construction algorithm with𝑂 (𝑛 log𝑛) work and𝑂 (log2 𝑛)
span using the standard parallel partition algorithm (𝑂 (𝑛) work and 𝑂 (log𝑛) span). However, it
requires𝑂 (log𝑛) rounds of data movement and is not cache-efficient when the input is larger than

the cache size. We will refer to this algorithm as the plain parallel 𝑘d-tree construction algorithm.

This is also the algorithm used by the BHL-tree from ParGeo [85].

Instead of partitioning all points into the left and right subtrees and pushing the points to the

next level in the recursive calls, the high-level idea of our approach is to build 𝜆 levels at a time by

one round of the data movement. To avoid the data movement for finding splitting coordinates,

our algorithm uses samples to decide all splitters for 𝜆 levels. It then distributes all points into the

corresponding subtrees (2
𝜆
of them) and recurses.

The main challenges here are 1) to use only a subset of the points (samples) to decide the splitters

and make the tree nearly balanced, and 2) to move each point exactly once to its final destination in a

cache-efficient and parallel manner. Below, we will first elaborate on our parallel and cache-efficient

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:6 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Algorithm 1: Parallel 𝑘d-tree construction
Input: A sequence of points 𝑃 .
Output: A 𝑘d-tree𝑇 on points in 𝑃 .
Parameter :𝜆: the height of a tree skeleton.

1 Function BuildTree(𝑃)
// Base case

2 if |𝑃 | < 2
𝜆 · 𝜎 then Use the plain parallel construction and return

3 𝑆 ← Uniformly sample 2
𝜆 · 𝜎 points on 𝑃 with replacement

4 Build tree skeleton T by constructing the first 𝜆 levels of a 𝑘d-tree on 𝑆

// Sieve each point to their corresponding bucket (external node) in T . This is performed by reordering all points in 𝑃 to
make points in the same bucket consecutive.

5 𝑅 [] ← Sieve(𝑃, T) // 𝑅 [𝑖]: the sequence slice for all points in bucket 𝑖
6 parallel-foreach external node 𝑖 do
7 𝑡 ← BuildTree(𝑅 [𝑖]) // Recursively build a 𝑘d-tree on 𝑅 [𝑖]
8 Replace the external node with 𝑡

9 return The root of T
// Sieve points in 𝑃 to the buckets (external nodes) in T

10 Function Sieve(𝑃, T)
11 (Conceptually) divide 𝑃 evenly into chunks of size 𝑙

12 parallel-foreach chunk 𝑖 do
13 for point 𝑝 in chunk 𝑖 do
14 𝑗 ← the bucket id for 𝑝 by looking up 𝑝 in T
15 𝐴[𝑖] [𝑗] ← 𝐴[𝑖] [𝑗] + 1
16 Get the column-major prefix sum of 𝐴[𝑖] [𝑗] as matrix 𝐵

17 parallel-foreach bucket 𝑗 do
18 Let 𝑠 𝑗 ← 𝐵 [0] [𝑗] be the offset of bucket 𝑗
19 parallel-foreach chunk 𝑖 do
20 for point 𝑝 in chunk 𝑖 do
21 𝑗 ← the bucket id for 𝑝 by looking up 𝑝 in T
22 𝑃 ′ [𝐵 [𝑖] [𝑗]] ← 𝑝

23 𝐵 [𝑖] [𝑗] ← 𝐵 [𝑖] [𝑗] + 1
24 Copy 𝑃 ′ to 𝑃
25 parallel-foreach bucket 𝑗 do
26 𝑅 [𝑗] ← the slice 𝑃 [𝑠 𝑗 ..𝑠 𝑗+1 − 1] // for the last bucket, 𝑠 𝑗+1 = |𝑃 |
27 return 𝑅 []

construction algorithm in Sec. 3.1, and show the cost analysis in Sec. 3.2.

3.1 Algorithms Description
We present our algorithm in Alg. 1 and an illustration in Fig. 1. The algorithm𝑇 = BuildTree(𝑃)

builds a 𝑘d-tree 𝑇 on the input points in array 𝑃 . As mentioned, our main idea is to use samples

to decide all splitters in 𝜆 levels. We define the skeleton at 𝑇 , denoted as T , as the substructure
consisting of all splitters (and thus interior nodes) in the first 𝜆 levels. We use the samples to

build the skeleton. In particular, we will uniformly take 2
𝜆 · 𝜎 samples from 𝑃 , where 𝜎 is the over

sampling rate. In Sec. 3.2 we will show how to choose the parameter 𝜎 to achieve strong theoretical

guarantees. Let 𝑆 be the set of sample points. The skeleton will be the first 𝜆 levels of the 𝑘d-tree

on 𝑆 . As we will show in Sec. 3.2, we will keep 𝑆 small and fit in cache, so that the skeleton can be

built by the plain parallel 𝑘d-tree construction algorithm at the beginning of Sec. 3.

The skeleton depicts the first 𝜆 levels of the tree, and splits the space into 2
𝜆
subspaces, corre-

sponding to the external nodes (leaves) of the skeleton. We call each such external node a bucket
in this skeleton. We label all buckets from 0 to 2

𝜆 − 1. The problem then boils down to sieving the

points into the corresponding bucket, so that we can further deal with each bucket recursively in

parallel. We first note that the target bucket for each point can be easily looked up in 𝑂 (𝜆) cost by
searching in the skeleton. Sequentially, one can simply move all points one by one to their target

bucket, by maintaining a pointer to the (current) last element in each bucket. In parallel, the key

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:7

challenge is to independently determine the “offset” of each point, so the points can be moved to

their target buckets in parallel without introducing locks or data races.

We borrow the idea from the cache-efficient parallel sorting algorithm [17, 31, 32], which also

involves redistributing elements into𝜔 (1) buckets. Our goal is to reorder array 𝑃 andmake all points

belonging to the same bucket to be contiguous, so that the next recursion receives a consecutive

input slice. To do this, we divide the array into chunks of size 𝑙 , and process them in parallel. We

first count the number of elements in chunk 𝑖 that fall into bucket 𝑗 in𝐴[𝑖] [𝑗]. Note that there is no
data race since we count all points sequentially within each bucket. Then we compute the exclusive

prefix sum of matrix𝐴 in column-major and get the offset matrix 𝐵— i.e., we consider storing matrix

𝐴 in column major in an array, and compute the exclusive prefix sum at each element. This can be

done by a parallel cache-efficient matrix transpose [17] and a standard parallel prefix-sum [12].

As such, 𝐵 [𝑖] [𝑗] implies the offset when writing a point in chunk 𝑖 that belongs to bucket 𝑗 . We

present an illustration for this process in Fig. 1. Then we process all buckets again in parallel, and

move each point to its final destination by using the offsets provided from matrix 𝐵 as the starting

pointer. There is still no data race here, since all points that “share” the same offset must be in the

same chunk and will be processed sequentially.

After all points in the same bucket are placed consecutively, we recursively build 𝑘d-trees for

each bucket in parallel. The recursion stops when the number of points is smaller than 2
𝜆 · 𝜎 . We

then switch to the base case and use the plain parallel 𝑘d-tree construction to build the subtree. We

will later show that by setting proper values for 𝜆 and 𝜎 , the base case fits into the cache and using

the plain parallel construction will not incur extra memory accesses.

3.2 Theoretical Analysis
We now formally analyze our construction algorithm and show its theoretical efficiency. We

start with a useful lemma about sampling. Similar results about sampling have also been shown

previously [1, 19, 69]. We put it here for completeness.

Lemma 3.1. For a Pkd-tree 𝑇 with size 𝑛′, for any 𝜖 < 1, setting 𝜎 = (6𝑐 log𝑛)/𝜖2 guarantees that
the size of a child subtree is within the range of (1/2 ± 𝜖/4) · 𝑛′ with probability at least 1 − 2/𝑛𝑐 .
Here we need to distinguish a subtree size 𝑛′ and the overall tree size 𝑛 for a stronger high

probability guarantee, so we can apply union bounds in the later analysis.

Proof. Alg. 1 guarantees that each leaf in a skeleton has at least 𝜎 sampled points. Therefore, every

time we find a splitter, it is the median of at least 2𝜎 sampled points. Let 𝑠 (≥ 2𝜎) be the number of

samples for this Pkd-tree 𝑇 , and Λ ⊂ 𝑇 contains the smallest (1/2 − 𝜖/4) · 𝑛′ points in the cutting

dimension. We want to show that the chance we have more than 𝑠/2 samples in Λ (i.e., the left side

has fewer than (1/2 − 𝜖/4) · 𝑛′ points) is small. Since all samples are picked randomly, we denote

indicator variable 𝑋𝑖 , where 𝑋𝑖 = 1 if the 𝑖-th sample is in Λ and 0 otherwise. Let 𝑋 =
∑
𝑋𝑖 for

𝑖 = 1..|Λ|, and 𝜇 = E[𝑋] = (1/2 − 𝜖/4)𝑠 . Let 𝛿 = 𝜖/(2 − 𝜖). Then (1 + 𝛿)𝜇 = (1 + 𝜖
2−𝜖) (

1

2
− 𝜖

4
)𝑠 = 𝑠

2
.

Using the form of Chernoff Bound Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp(−𝛿2𝜇/(2 + 𝛿)), we have:

Pr

[
𝑋 ≥ 𝑠

2

]
≤ exp

(
− 𝛿2𝜇

2 + 𝛿

)
= exp

(
− 𝜖2𝑠

16 − 4𝜖

)
(plug in 𝑠 ≥ 2𝜎)

≤ exp

(
−12𝑐 log𝑛

16 − 4𝜖

)
=

1

𝑛𝑐 ·
12 log

2
𝑒

16−4𝜖

≤ 1

𝑛𝑐
.

The right subtree has the same low probability of being unbalanced, so taking the union bound

gives the state bound. □

Lemma 3.2 (Tree height). The total height of a Pkd-tree with size 𝑛 is 𝑂 (log𝑛) for 𝜎 = Ω(log𝑛),
or log𝑛 +𝑂 (1) for 𝜎 = Ω(log3 𝑛), both whp.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:8 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Proof. To prove the first part, we will use 𝜖 = 1 in Lem. 3.1. In this case, for 𝜎 = 6𝑐 log𝑛, one subtree

can have at most 3/4 of the size of the parent with probability 1 − 1/𝑛𝑐 , which means that the tree

size shrinks by a quarter every level. This indicates that the tree heights is 𝑂 (log𝑛) whp for any

constant 𝑐 > 0.

We now show the second part of this lemma. For leaf wrap 𝜙 ≥ 4, the tree has height 1 for

𝑛 ≤ 4. We will show that using 𝜖 = 4/log𝑛 (i.e., 𝜎 = 𝑂 (log3 𝑛)), the tree height ℎ is log𝑛 +𝑂 (1).
Similar to the above, here in the worst case, for a subtree of size 𝑛′, the children’s subtree size is at
most (1/2 + 𝜖/4) · 𝑛′ = (1/2 + 1/log𝑛) · 𝑛′. Hence, the tree height satisfies (1/2 + 1/log𝑛)ℎ = 1/𝑛,
so ℎ = − log𝑛/log(1/2 + 1/log𝑛). Here, let 𝛿 = ℎ − log𝑛 = − log𝑛/log(1/2 + 1/log𝑛) − log𝑛. It

solves to 𝛿 = 𝑂 (1) for 𝑛 > 4. Although complicated, the analysis primarily employs some algebraic

methods. Due to the space limit, we put it in the full version of this paper [63]. The high-level

idea is to replace 𝑡 = log𝑛, so 𝛿 = 𝑓 (𝑡) = −𝑡/(log(1/2 − 1/𝑡)) − 𝑡 = 𝑡/(1 + log 𝑡 − log(𝑡 − 2)) − 𝑡 .
We show that 𝑓 (𝑡) is decreasing for 𝑡 ≥ 2 by proving 𝑓 ′ (𝑡) < 0 for 𝑡 ≥ 2. Since we have several

logarithmic functions in the denominator, we computed the second and third derivatives and used

a few algebraic techniques to remove them. □
Later, we will experimentally show that maintaining strong balancing criteria (tree height of

log
2
𝑛 +𝑂 (1)) is not necessary for most 𝑘d-tree’s use cases. Hence, in the rest of the analysis, we

will use 𝜎 = Θ(log𝑛) and assume the tree height as 𝑂 (log𝑛).
With these lemmas, we now show that Alg. 1 is theoretically efficient in work, span, and cache

complexity, if we plug in the appropriate parameters. Recall that𝑀 is the small memory size. We

will set 1) skeleton height 𝜆 = 𝜖 log𝑀 for some constant 𝜖 < 1/2; and 2) chunk size 𝑙 = 2
𝜆
, so

array 𝐴 and 𝐵 have size 𝑂 (2𝜆 × |𝑃 |/𝑙) = 𝑂 (|𝑃 |), and operations on 𝐴 and 𝐵 will have 𝑂 (1) cost per
input point on average. We use 𝑂 (Sort (𝑛)) = 𝑂 ((𝑛/𝐵) log𝑀 𝑛) to refer to the best-known cache

complexity of sorting 𝑛 keys, which is also a lower bound for 𝑘d-tree construction—consider that

the input points are in one dimension, then building a 𝑘d-tree is equivalent to sorting all points by

their coordinates. We also assume𝑀 = Ω(polylog(𝑛)), which is true for realistic settings.

Theorem 3.3 (Construction cost). With the parameters specified above, Alg. 1 constructs a
Pkd-tree of size 𝑛 in optimal 𝑂 (𝑛 log𝑛) work and 𝑂 (Sort(𝑛)) = 𝑂 ((𝑛/𝐵) log𝑀 𝑛) cache complexity,
and has 𝑂 (𝑀𝜖

log𝑀 𝑛) span for constant 0 < 𝜖 < 1/2, all with high probability. Here 𝑀 is the
small-memory size and 𝐵 is the block size.
Proof. We start with the work bound. Although the entire algorithm has several steps, each input

point is operated for 𝑂 (1) times in each recursive level, except for lines 14 and 21. For these two

lines, looking up the bucket id has𝑂 (𝜆) work. Since the total recursive depth of Alg. 1 is𝑂 (log𝑛)/𝜆
whp, the work is 𝑂 (𝜆 · (log𝑛)/𝜆) = 𝑂 (log𝑛) whp per input point, leading to total 𝑂 (𝑛 log𝑛) work
whp.
We now analyze the span of Alg. 1. The algorithm starts with sampling 2

𝜆 · 𝜎 points and building

a tree skeleton with 𝜆 levels. Taking samples and building the skeleton on them can be trivially

parallelized in 𝑂 (𝜆 log𝑛) span (using the plain algorithm at the beginning of Sec. 3). In the sieving

step, each chunk has 𝑙 = 2
𝜆
elements that are processed sequentially, and all chunks are processed

in parallel. This gives 𝑂 (2𝜆) span. The column-major prefix sum on line 16 can be computed in

𝑂 (log𝑛) span [17], and all other parts also have 𝑂 (log𝑛) span. The total span for one level of

recursion is therefore 𝑂 (𝑙 + log2 𝑛) = 𝑂 (𝑀𝜖), assuming 𝑀 = Ω(polylog(n)). Since Alg. 1 have

𝑂 (log𝑛)/𝜆 recursive levels whp, the span for Alg. 1 is 𝑂 (𝑀𝜖
log𝑀 𝑛) whp.

We finally analyze the cache complexity. Based on the parameter choosing, the samples fully

fit in the cache. In each sieving step, since 𝑙 = 2
𝜆 = 𝑀𝜖 ≤

√
𝑀 , the array 𝐴[𝑖] [·] and 𝐵 [𝑖] [·] fits in

cache, so the loop bodies on lines 13 and 20 will access the input points in serial, incurring 𝑂 (𝑛/𝐵)
block transfers. All other parts cost𝑂 (𝑛/𝐵) block transfers, including the column-major prefix sum

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:9

Tree points

Points to be inserted

3 Bucket

0 2 1 3

Step 1

Fetch tree skeleton

0 1

2 3

Step 2
Sieve points

✔ ✔ Imbalance!

✔ : Continue recursion
Step 3

: Rebuild with new points
Fig. 2. Illustation of our batch insertion to a 𝑘d-tree. Our algorithm first fetches the tree skeleton from

the 𝑘d-tree, sieves the points into the corresponding bucket as in Alg. 1, then processes each buckets in parallel,

and finally rebuilds the subtrees that become imbalance after insertion.

on line 16 [17]. Hence, the total cache complexity for Alg. 1 is𝑂 (𝑛/𝐵) per recursive level, multiplied

by 𝑂 ((log𝑛)/𝜆) = 𝑂 (log𝑛/log𝑀) = 𝑂 (log𝑀 𝑛) levels whp, which is 𝑂 (𝑛/𝐵 · log𝑀 𝑛). □
The work and cache bounds in Thm. 3.3 are the same as sorting (modulo randomization) [3] and

hence optimal. The span bound can also be optimized to 𝑂 (log2 𝑛) whp, using a similar approach

in [17], with the details given in the proof of the theorem below.

Theorem 3.4 (Improved span). A Pkd-tree of size 𝑛 can be built in optimal 𝑂 (𝑛 log𝑛) work and
𝑂 (Sort(𝑛)) = 𝑂 ((𝑛/𝐵) log𝑀 𝑛) cache complexity, and has 𝑂 (log2 𝑛) span, all with high probability.

Proof. The𝑂 (2𝜆) = 𝑂 (𝑀𝜖) span per recursive level is caused by the two sequential loops on lines 13

and 20. These two loops can be parallelized by a sorting-then-merging process as in [17]. The

high-level idea is to first sort (instead of just count) the entries in the loop on line 13 based on the

leaf labels. Once sorted, we can easily get the count of the points in each leaf. Then on line 20, once

the array is sorted, points can be distributed in parallel. We refer the readers to [17] for more details.

The span bound for each level is 𝑂 (log𝑛) [16, 17] for the sieving step. For the rest of the part, the

span is𝑂 (𝜆 log𝑛) caused by skeleton construction. Altogether, the span per level is𝑂 (𝜆 log𝑛), and
there are 𝑂 (log𝑛/𝜆) recursion levels whp. Therefore, the total span is 𝑂 (log2 𝑛) whp. □
In practice we still use the previous version because 𝑂 (𝑀𝜖

log𝑀 𝑛) span can enable sufficient

parallelism, and the additional sorting to get the improved span may lead to performance overhead.

4 Parallel Algorithms for Batch Updates
In this section, we present our parallel update algorithms for Pkd-trees. Here we consider the

batch-parallel setting that inserts or deletes a batch of points 𝑃 to the current Pkd-tree𝑇 . Pkd-trees
do not require the tree to be perfectly balanced as in existing parallel implementations [52, 76, 82].

Our key idea is to make the treeweight-balanced and to partially reconstruct the tree upon imbalance.

Fig. 2 illustrates the high-level idea. We allow the sizes of the two subtrees to be off by at most a

factor of 𝛼 , i.e., the size of a subtree can range from (0.5−𝛼) to (0.5 +𝛼) times the size of its parent.

Such a relaxation allows most updates to be performed lazily, until at least a significant fraction of

a subtree has been modified. If such a case happens, we rebuild the unbalanced subtree using Alg. 1.

The rebuild cost can be amortized to the updated points in all batches. This idea of lazy updates with

reconstruction has been studied sequentially on various trees for point updates [36, 65]. The key

challenge here is to adapt this idea to the batch-parallel setting while maintaining theoretical and

practical efficiency. Theoretically, we show efficient work and cache bounds, and high parallelism

for our new batch-update algorithm. In practice, we conduct an in-depth performance study with

the relaxation of balancing criteria. In Sec. 6.5, we show that the query performance of Pkd-tree
remains fairly stable for 𝛼 ≤ 0.4 (the two subtree sizes differ by up to 9×). The weight-balanced

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:10 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Algorithm 2: Batch insertion

Input: A sequence of points 𝑃 and a 𝑘d-tree𝑇 .
Output: A 𝑘d-tree with 𝑃 inserted.

Parameter :𝜆: the maximum height of a fetched tree skeleton.

𝜙 : the leave wrap of𝑇 .

// Insert points 𝑃 into 𝑘d-tree𝑇
1 Function BatchInsert(𝑇, 𝑃)
2 if 𝑃 = ∅ then return𝑇

3 if 𝑇 is leaf then return BuildTree(𝑇 ∪ 𝑃) // Insert into a leaf
4 T ← the skeleton at𝑇

5 Sieve points to the corresponding bucket in T using Sieve(𝑃, T) from Alg. 1. Let 𝑅 [𝑖] be the sequence of all points
sieved to bucket 𝑖 .

6 𝑡 ← The root of skeleton T
7 return InsertToSkeleton(𝑡, 𝑅 [0..2𝜆))
// Insert the buckets 𝑅 [𝑙] to 𝑅 [𝑟 − 1] to a node 𝑡 in the skeleton

8 Function InsertToSkeleton(𝑡, 𝑅 [𝑙 ..𝑟))
9 if 𝑡 is an external node in the skeleton then
10 𝑥 ← the subtree at 𝑡

11 return BatchInsert(𝑥, 𝑅 [𝑙])
12 else
13 if after insertion, the two subtrees at 𝑡 are weight-balanced then
14 𝑚 ← number of buckets in 𝑡 .lc
15 In Parallel:
16 𝑡 .lc ← InsertToSkeleton(𝑡 .lc, 𝑅 [𝑙,𝑚))
17 𝑡 .rc ← InsertToSkeleton(𝑡 .rc, 𝑅 [𝑚,𝑟))
18 return 𝑡

19 else return BuildTree

(
𝑡 ∪

(⋃𝑟−1
𝑖=𝑙

𝑅 [𝑖]
))

// Rebuild the subtree

feature of Pkd-tree allows it to significantly outperform all existing counterparts.

4.1 Batch Insertion
We show our insertion algorithm in Alg. 2, which takes as input a 𝑘d-tree 𝑇 and a set of points

𝑃 , and inserts 𝑃 to𝑇 . There are two base cases: 1) if 𝑃 = ∅ no insertion is needed (line 2), and 2) if𝑇

is a leaf, the algorithm will construct a tree based on 𝑃 ∪𝑇 (line 3).

Otherwise, we will first grab the skeleton T at 𝑇 at line 4. Here we will also apply the sieving
algorithm in construction to sieve all points in 𝑃 based on the skeleton T (line 5). Based on

the partition of the buckets 𝑅 [], we will apply the insertions and rebalance the tree in function

InsertToSkeleton. This algorithm not only processes the skeleton top down to perform the

insertions of each bucket to the corresponding subtrees, but also identifies the unbalanced subtrees

to reconstruct them. In particular, with the set of points in each bucket and the original subtree size,

we can compute the sizes of each subtree in T after insertion, and thus determine whether any of

these subtrees are unbalanced. If we encounter the node 𝑡 in T that will become unbalanced after

insertion (the else-condition at line 19), we will directly reconstruct the subtree using all original

points in 𝑡 and the points in 𝑃 that belong to this subspace. A reconstruction can be performed

by flattening all points in the current subtree with the points to be inserted, and applying the

construction algorithm to create a (almost) perfectly balanced tree. Note that in our case, it is not

perfectly balanced due to our sampling-based construction algorithm, but in Sec. 4.3 we will show

our update algorithms are still theoretically efficient. If a reconstruction is triggered at subtree 𝑡 ,

we do not need to further process the subtrees of 𝑡 in this case.

4.2 Batch Deletion
Given a set of points 𝑃 and a 𝑘d-tree𝑇 , the batch deletion algorithm removes 𝑃 from𝑇 . Compared

with batch insertion, the challenge of batch deletion is the additional step of handling points that are

not in the tree, i.e., 𝑃 \𝑇 ≠ ∅. Due to these absent points, we can no longer identify the unbalanced

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:11

subtrees before we traverse into these subtrees and mark all the points to be deleted.

Therefore, our algorithm for batch deletion goes in two rounds. In the first round, all points in 𝑃

are sieved into the corresponding leaves in𝑇 using the sieving algorithm from Alg. 1. By doing this,

we identify all points in 𝑃 that are not in 𝑇 , and discard them. After this, we know the exact size of

each subtree after deletion, and we then identify the unbalanced ones after deletion. This process is

similar to the batch insertion algorithm, and thus the asymptotic cost also remains the same.

4.3 Theoretical Analysis
We now show that our conceptually simple batch update algorithms also have good theoretical

guarantees. Since the update algorithms use the construction algorithm as a subroutine, we need to

accordingly set up the parameters for both algorithms. In particular, we select 𝜎 = (6𝑐 log𝑛)/𝛼2
for

some constant 𝑐 > 0 to ensure a low amortized cost in Thm. 4.1. Here we assume 𝛼 is a constant

and 𝜎 = Θ(log𝑛).

Theorem 4.1 (Updates). Using 𝜎 = (6𝑐 log𝑛)/𝛼2, the update (insertions or deletions) of a batch of
size𝑚 = 𝑂 (𝑛) on a Pkd-tree of size𝑛 has𝑂 (log2 𝑛) spanwhp; the amortized work and cache complexity
per element in the batch is 𝑂 (log2 𝑛) and 𝑂 (log(𝑛/𝑚) + (log𝑛 log𝑀 𝑛)/𝐵) whp, respectively.

For simplicity, Thm. 4.1 assumes the batch size𝑚 = 𝑂 (𝑛). If𝑚 = 𝜔 (𝑛), we just need to replace

the term 𝑛 by𝑚 + 𝑛 in the bounds for batch insertions (no change needed for batch deletion).

Due to the space limit, we defer the proof in the full version of this paper [63]. The overall

structure of this analysis is similar to Thm. 3.3, with the additional information that traversing𝑚

leaves in a binary tree of size 𝑛 touches 𝑂 (𝑚 log(𝑛/𝑚)) tree nodes [15]. Again in practice, we use

the sieving approach in Alg. 1, which leads to 𝑂 (𝑀𝜖
log𝑛) span and supports sufficient parallelism.

The update cost bound for Pkd-tree is higher than using the logarithmic method—e.g., the work

per point is 𝑂 (log2 𝑛) instead of 𝑂 (log𝑛). However, we note that the bound for Pkd-tree is not
tight. Unless in the adversarial case, the update cost per point is more likely to be 𝑂 (log𝑛) when
subtree rebuild is less frequent. In Sec. 6, we will experimentally show that the update is faster than

the logarithmic method practically. Meanwhile, since Pkd-tree only keeps a single tree rather than

𝑂 (log𝑛) trees, the query performance on Pkd-tree is significantly better.

In addition, Pkd-tree can support stronger balancing criterion for by setting 𝛼 = 𝑜 (1). In this

case, the amortized work and cache complexity per point will increase to 𝑂 ((log2 𝑛)/𝛼) and
𝑂 (log(𝑛/𝑚) + (log𝑛 log𝑀 𝑛)/𝐵𝛼) whp, respectively. For example, we can enable log𝑛 +𝑂 (1) tree
height by using 𝛼 = 𝑂 (1)/log𝑛. However as mentioned, our experimental results show that using

tree height as 𝑂 (log𝑛) is good enough to give overall good performance for both updates and

queries in practice.

5 Implementation Details

Avoid the Extra Copies. For simplicity, in Alg. 1, we assume copying the array of points in 𝑃 ′ back
to 𝑃 (line 24) after distributing the points. In practice, this copy can be avoided by swapping 𝑃 and

𝑃 ′ in each recursive call. This significantly saves unnecessary memory accesses in the algorithm.

Parameter Choosing. Our theoretical analysis in Sec. 3.2 suggests 𝜆 = 𝜖 log𝑀 for some constant

𝜖 < 1/2. In practice, we observed that using 𝜆 = 4 to 10 generally gives good performance. We use

𝜆 = 6 for Pkd-trees in our experiments. We use 𝜙 = 32 for the leaf warp size, and over sampling

rate 𝜎 = 32. We set the balancing parameter 𝛼 = 0.3, and further explain our choice in Sec. 6.5.

Reduce the Memory Usage. A key effort in implementing Pkd-tree is to minimizing the memory

usage. Reducing the memory footprint is crucial in at least two aspects. First, it allows the Pkd-tree
to handle larger inputs. Second, a smaller memory footprint generally means better cache utilization,

leading to better performance.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:12 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

There are a few approaches in the design of the Pkd-tree to reduce memory usage. The first is

the leaf wrapping as mentioned, which creates a flat tree leaf when the subtree size drops below

a certain threshold (32 in Pkd-trees). We also contract the leaves when all points are duplicates,

and we refer the audience to the full version of this paper [63] for details. Second, we try to keep

each interior node as small as possible to fit more tree nodes in the cache. The only additional

information we keep for each tree node is the subtree size, which is needed in our weight-balance

scheme and is used in range count queries. Namely, unlike ParGeo and CGAL, the Pkd-tree does
not store the bounding box of each tree node, which is the smallest box containing all points in this

subtree. This box can be used in queries to prune the subtree: when the query does not overlap

with the box, the entire subtree can be skipped. In Pkd-tree, instead of storing the bounding box,

the query will compute the subspace of each subtree on-the-fly: the function will pass the subspace

of the current tree node to recursive calls at its children, so the subspaces for the children can be

further computed with the splitter. This is not as tight as the bounding box, but in our experiments,

we observed that avoiding explicitly storing bounding boxes gives better overall performance for

Pkd-tree.
Queries. Since the Pkd-tree is a single 𝑘d-tree, we can use all standard 𝑘d-tree query algorithms

on Pkd-trees.
In our 𝑘-NN query, we use the standard depth-first search algorithm. When searching the query

point 𝑞 in a non-leaf subtree 𝑇 , if 𝑞 is to the left of the splitter of 𝑇 , it will visit the 𝑇 .𝑙𝑐 first, and

vice versa. After the recursion returns, we prune the visit to the other child of 𝑇 by the distance

between 𝑞 and the splitter in 𝑇 . If 𝑇 is a leaf, we traverse all points stored in 𝑇 and add them to the

candidate container. The range query is to traverse the tree recursively, checking if the subspaces

associated with nodes fall within the query box and pruning branches that do not intersect the

query region. The only strong query bounds we know of for the standard 𝑘d-tree are for orthogonal

range queries and range counts. A range count on 𝐷 dimensions takes 𝑂 (2ℎ (𝐷−1)/𝐷) work on a

𝑘d-tree of height ℎ [2, 19], which is 𝑂 (𝑛 (𝐷−1)/𝐷) if the tree height is log𝑛 +𝑂 (1). The bound for

a range query has an additive term 𝑘 where 𝑘 is the output size. We can set the parameters of

Pkd-tree accordingly as in Lem. 3.2 to achieve this bound in theory, although later in Sec. 6.5 we

show that the query performance does not degenerate by a slightly larger tree height. While no

strong bounds are known for 𝑘-NN queries on 𝑘d-tree on general distributions, previous work has

shown that 𝑘d-tree is highly practical for such queries, and it is the main use case for 𝑘d-trees in

the real world.

Parallel Granularity Control. As standard parallel granularity control, for tree construction and

batch update, when the input size is smaller than 1024, we will continue the process using the

standard sequential algorithm.

6 Experiments
We conducted extensive experiments to demonstrate the efficiency of the Pkd-tree. For both

synthetic (Sec. 6.1) and real-world (Sec. 6.2) datasets, the Pkd-tree shows better performance than

other baselines in construction, batch updates, and various queries.

We also provide in-depth studies to further understand the performance gains of Pkd-trees.
Sec. 6.3 measures the number of cache misses in different algorithms. Our results show that the

theoretical guarantee for Pkd-trees (Thm. 3.3 and 4.1) indeed allows for better cache-efficiency and

leads to good performance in practice. Sec. 6.4 studies the two techniques in our tree construction

algorithm, sampling and constructing multiple levels, and show that they lead to roughly 2× and

4× performance gains, respectively. Since Pkd-trees are weight-balanced, in Sec. 6.5 we show how

the balancing criterion affects the update and query performance, and explain how we choose the

parameters in the Pkd-tree. In Sec. 6.6, we show that the Pkd-tree has good parallel scalability.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:13

Setup.We use a machine with 96 cores (192 hyperthreads) with four-way Intel Xeon Gold 6252

CPUs and 1.5 TB RAM. Our implementation is in C++ using ParlayLib [13] to support fork-join

parallelism. The reported numbers are the average of three runs after a warm-up run. This approach

ensures that all timed runs begin with a consistent cache configuration, resulting in more stable

performance. We use 𝜆 = 6 as explained in Sec. 5. We set 𝛼 = 0.3, and discuss the choice of this

parameter in Sec. 6.5.

Baselines. We compare the Pkd-tree with three existing implementations, described as follows.

• BHL-tree [85]. The plain implementation of a parallel 𝑘d-tree from ParGeo uses a single tree
structure with the binary heap layout. BHL-tree uses the plain parallel 𝑘d-tree construction
algorithm described in Sec. 3, which is work-efficient but not cache-optimized. Its batch update

simply rebuilds the whole tree.

• Log-tree [85]. The 𝑘d-tree implementation based on the logarithmic method from ParGeo. The
Log-tree keeps𝑂 (log𝑛) static cache-oblivious 𝑘d-trees (using the vEB layout) with exponentially

increasing sizes. A batch update is performed by merging and rebuilding a subset of the trees.

Queries have to be performed on all 𝑂 (log𝑛) trees and the results need to be combined.

• CGAL [82]. The 𝑘d-tree in the computational geometry libraryCGAL.CGAL supports parallelism
using the threading building blocks (TBB) [51]. During construction, CGAL partitions the points

sequentially, then builds two subtrees in parallel. A batch insertion rebuilds the whole tree with

the inserted points; a batch deletion removes the points one by one.

Datasets. We test both synthetic and real-world datasets. We introduce the real-world datasets in

Sec. 6.2. For synthetic datasets, we use 64-bit integer coordinates with two distributions: Varden
and Uniform. Varden is a skewed distribution from [37]. It generates points by a random walk

with a low probability of restarting from a random place. Therefore, it contains some very dense

subareas that can be far from each other, which can be used as pressure tests for the quality of

𝑘d-trees as well as the performance for frequent rebalancing. Uniform draws points within a box

uniformly at random. For simplicity, we shorthand each dataset by the dimension, distribution and

size. For instance, “3D-V-1000M” stands for 1000 million points in 3 dimensions from Varden.

6.1 Operations on Synthetic Datasets
Overall Performance.
We summarize the performance for the Pkd-tree and other baselines in Tab. 3 with tree size of

10
9
, in dimensions 𝐷 ∈ {2, 3, 5, 9}. We also include an experiment on a synthetic dataset with 12

dimensions for all baselines in the full paper [63]. Each batch for insertion or deletion contains 10
7

(1% of the tree size) points from the same distribution. We test two query types: 1) 10
7
of 10-NN

queries, 2) 10
4
range report queries (output sizes 10

4
–10

6
). Queries are performed directly after

construction. Different queries run in parallel, and each query runs in serial. No other baselines

support range count queries, so we test this query on Pkd-tree separately in Fig. 5.

For construction, the Pkd-tree is the fastest in all tests, which is 8.26–12.5× faster than Log-trees,
8.20–11.1× faster than BHL-trees, and 39.1–363× faster thanCGAL. The high performance is mainly

from good cache-efficiency and scalability, which will be studied in more details in Sec. 6.3 and 6.6,

respectively. CGAL has a known scalability issue [14] (also see the scalability curve in Fig. 10),

making it much slower than other implementations in construction.

The Pkd-tree also outperforms all baselines in batch updates.BHL-trees andCGAL always rebuild
the entire tree after updates, so Pkd-trees are orders of magnitude faster than them, especially

on small batches. Compared to the fastest baseline Log-tree, Pkd-trees are 17.4–40.7× faster in

insertions and 3.27–21.7× faster in deletions, mainly due to two reasons: 1) Pkd-trees sieve the

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:14 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Build Batch Insert (1%) Batch Delete (1%) 10-NN (1%) Range Report (10K)

𝐷 2 3 5 9 2 3 5 9 2 3 5 9 2 3 5 9 2 3 5 9

Uniform-1000M

Ours 3.15 3.65 5.67 9.66 .104 .107 .123 .152 .121 .134 .171 .232 .381 .822 4.58 108 .391 .706 2.31 16.2

LOG 37.9 45.4 58.0 92.7 2.16 2.66 3.67 6.19 .396 .485 1.94 2.39 2.96 4.48 20.2 879 2.62 4.14 8.94 31.6

BHL 31.7 40.5 58.4 104 31.4 40.3 57.1 103 30.9 39.3 68.7 114 .487 1.02 7.38 448 2.06 2.94 6.53 23.2

CGAL 1147 1079 1217 1412 1660 1815 1863 2145 41.2 41.3 45.0 40.2 1.04 2.30 12.5 189 311 282 249 184

Varden-1000M

Ours 3.66 4.78 6.27 11.2 .055 .107 .157 .350 .049 .112 .127 .237 .172 .210 .336 .433 .382 .745 2.24 13.1

LOG 34.2 41.8 57.8 92.6 2.01 2.60 3.72 6.07 1.06 1.14 1.92 2.30 2.05 2.29 23.3 2225 2.63 4.25 7.95 14.1

BHL 30.2 39.2 58.7 104 29.4 39.1 57.3 102 29.0 38.4 67.0 123 .242 .324 .456 .535 1.95 3.03 5.72 9.96

CGAL 429 390 372 438 849 700 582 599 13.0 9.53 23.1 3.90 .511 .217 .318 .392 296 283 253 278

Table 3. Running time (in seconds) for Pkd-tree and other baselines. Lower is better. 𝐷 : dimensions.

Baselines are introduced in Sec. 6. “LOG”: Log-tree, “BHL”: BHL-tree. The fastest runtime for each benchmark

is underlined. Batch insertion is on 10M points from same distribution of the points in the tree, and batch

deletion removes 10M points from the tree. “10-NN”: 10-nearest neighbor queries on 1% (10M) of the points

in the tree. “Range Report”: 10K orthogonal rectangle report queries with output size between 10
4
–10

6
. For

queries, we run all of them in parallel and each query itself is run sequentially.

updated points to the subtrees in a cache-efficient way, and 2) both Pkd-trees and Log-trees may

reconstruct some (sub)trees in batch updates, and Pkd-trees are faster in tree construction as

discussed above.

For both 𝑘-NN and range queries, the Pkd-tree is the fastest except for three cases, all in high-

dimensional queries. It is within 1.1× slower than CGAL in two cases, and 1.32× slower than the

BHL-tree in one case. As mentioned in Sec. 5, Pkd-trees do not store the bounding boxes to optimize

memory usage, but compute the subspaces for each subtree on-the-fly in queries. This approach

trades off (slower) query performance for (faster) construction and updates, which can be more

pronounced in higher dimensions. Even so, Pkd-tree is still the fastest in queries for 13 out of 16

instances. Therefore, we choose not to maintain the bounding boxes in tree nodes to achieve better

performance for both updates and queries.

Another interesting finding is that almost all 𝑘d-trees perform better on Varden than Uniform
for 𝑘-NN queries. Since Varden datasets contain dense subareas, the neighbors are usually in these

regions, resulting in more effective pruning than the uniform datasets.

In the following, we present an in-depth performance study for updates and queries. We use

synthetic datasets with size 10
9
points in 3D as the benchmark for the rest of this section.

Batch Updates. To further understand the performance of batch updates, we vary the batch sizes

from 10
5
to 10

9
, and show the results in Fig. 3. We omit smaller batch sizes because they can be

completed quickly anyway and do not have high demand for parallelism. We first construct a tree

with 10
9
points. Then a batch insertion inserts a batch from the same distribution into the tree; the

batch deletion removes a batch of points from the tree.

Pkd-trees have the best performance for all instances on all distributions. Both the BHL-tree and
CGAL fully rebuild the tree on insertions, showing a flat curve of running time with varying batch

sizes, which are much slower than the Pkd-tree based on rebalancing. A batch deletion in CGAL
removes the points one by one, which performs well for small batches, but is very inefficient for

large batches. The Log-tree’s performance sits in the middle. It avoids fully rebuilding the tree by

merging a subset of the trees for batch insertions. One may notice that there are several jumps for

the Log-tree in batch insertions. This is because when the batch size reaches certain threshold, a

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:15

Fig. 3. Time required for batch update on points from
Varden and Uniform on a tree with 1000M points in 3 dimen-
sions. Lower is better. The batch size is the number of points (×
1M) in the batch. The time is measured in seconds. Both axes are

in log-scale.

Fig. 4. Time of 𝑘-NN queries for 𝑘 ∈
{1, 10, 100}. Lower is better. The dataset
contains 1000M points in 3 dimensions.

The test contains 𝑘-NN queries from 10
7

points in the input. Plots are in log scale.

reconstruction for a large tree may be triggered, causing significant more time. Pkd-trees have the
most stable and efficient performance across tests.

𝒌-NN Queries. We now study 𝑘-NN queries on Uniform and Varden with 𝑘 ∈ {1, 10, 100}. We

consider 10
9
input points in 3D and call 𝑘-NN queries on the first 10

7
input points in parallel. Results

are presented in Fig. 4. We also measure out-of-distribution 𝑘-NN queries in the full paper [63]. The

Pkd-tree is always among the fastest. The performance of the BHL-tree and CGAL is similar since

they also keep a single tree. The Pkd-tree is slightly faster due to not storing bounding boxes in the

tree nodes (see Sec. 5)—it saves the memory footprint at the cost of less efficient pruning. Overall

it gives some small advantages on 𝑘-NN query performance in low dimensions. Log-trees have
significantly worse performance for 𝑘-NN queries—5.85–11.7× slower on Uniform and 12.0–21.9×
slower on Varden than Pkd-trees. This is because a query needs to search in all the 𝑂 (log𝑛) trees
and merge the results.

Range Queries. In Tab. 3, we test range reports with relatively large output sizes 10
4
–10

6
to make

the queries more adversarial. Since the performance of range report is proportional to the output

size, in this section, we conduct additional tests on range-count and range-report queries with a

variety of output sizes. Note that although small query sizes are more frequently encountered in

practice, range queries with large output sizes are also prevalent in various applications, including

dynamic programming [40], etc. The Pkd-tree is the only one that supports range count. We run

all queries sequentially to measure the query time w.r.t. the output size in Fig. 5. The Pkd-tree (red
circles in Fig. 5) generally have the best performance across a wide range of output sizes from 1

to 10
6
. The BHL-tree is competitive. Log-tree is slower than Pkd-tree and BHL-tree since it has to

query 𝑂 (log𝑛) trees. Note that when a subtree is fully contained in the query box, one can output

all points in the subtree in parallel. This has been incorporated into all baselines except for CGAL,
which makes CGAL particularly slow with large output sizes. When the query only requires the

count of points in the range, the range count function on Pkd-trees (blue rectangles in Fig. 5) can

be much faster than reporting all the points, especially with large output sizes. This indicates the

necessity of including range-count in the interface of a 𝑘d-tree.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:16 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Fig. 5. Running time (in seconds) of range
queries w.r.t. output sizes. Lower is better. The
dataset contains 1000M points in 3 dimensions. Plots

are in log-log scale.

Fig. 6. The performance gain for techniques in
tree construction. Lower is better. The datasets

have 1000M size in 3 dimensions. The y-axis normal-

ized to the final versionwith 𝜆 = 6 and using sampling.

Points Dims Op. Ours Log-tree BHL-tree CGAL

H
T

928K 10

Build .008 .678 .061 .472

1-NN .008 2.53 .015 .015

10-NN .043 2.81 .059 .020

Range .095 .651 .478 1.38

H
H

2.04M 7

Build .054 .716 .102 t.o.

1-NN .058 1.26 1.60 -

10-NN .229 2.60 3.19 -

Range .080 .819 .564 -

C
H
E
M

4.21M 16

Build .059 7.07 .786 2.52

1-NN .042 16.1 .123 .035

10-NN 3.53 17.3 3.32 3.95

Range .412 4.28 2.64 3.14

G
L

24M 3

Build .256 1.34 .792 s.f.

1-NN .274 3.74 1.31 -

10-NN .775 14.4 9.37 -

Range .192 1.40 1.30 -

C
M

321M 3

Build 1.54 16.7 13.3 184

1-NN 2.79 25.9 5.24 5.94

10-NN 9.09 s.f. s.f. 33.0

Range .136 1.88 1.63 26.0

O
S
M

1298M 2

Build 5.08 51.3 56.6 497

1-NN 8.73 134 13.0 10.5

10-NN 16.5 214 30.6 22.6

Range .107 4.87 3.80 62.9

Table 4. Tree construction and 𝑘-NN time on read-world datasets for Pkd-tree and baselines. Lower
is better. The “Points” is the number of points in the datasets and “Dim.” is the dimension for the points. 𝑘-NN

queries are performed in parallel on all points in the dataset. “Range” is the time for 10
3
range report queries

with output size between 10
4
–10

6
. The fastest runtime for each benchmark is underlined. “s.f.”: segmentation

fault. “t.o.”: time out (more than 3 hours).

6.2 Real-World Datasets
We test our Pkd-tree and other baselines on real-world datasets, including very large ones COSMOS

(CM) [74] and the Northern American region of OpenStreetMap (OSM) [45] with up to 1.298 billion

points, high-dimensional datasets HT [47], CHEM [33, 87], and HouseHold (HH) [46] with up to 16

dimensions, and GeoLife (GL) [91], with highly duplicated points. All coordinates are 64-bit real

numbers. Experiments on these real-world datasets show similar trends as in the synthetic datasets

in Sec. 6.1.

Tree Construction, 𝒌-NN and Range Report.We present the running time for tree construction,

1-NN and 10-NN queries, and range report queries for all input points in Tab. 4. CGAL fails to build

HH and GL due to the inability to handle heavy duplicates. BHL-trees and Log-trees cannot process

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:17

Fig. 7. Batch update using a sliding window spanning five years and 10-NN queries on OSM [45].
Lower is better. The input is batched by years from 2014 to 2023. In each year, we insert the corresponding

batch, and delete the batch from five years ago if applicable. After the update, we perform 10
7
10-NN queries

in parallel. In (a) and (b), bars (left axis) are the batch size, and lines (right axis) depict the time for batch

insertion and deletion in every year respectively. In (c), bars (left axis) are tree size, and lines (right axis) show

the 10-NN query time. Vertical axes are in log scale.

10-NN queries on CM due to high memory usage.

The Pkd-tree shows the best performance in all but three instances of queries in high dimensions,

which is consistent with the results in Tab. 3. CGAL is faster in 10-NN on HT (𝐷 = 10) and 1-NN on

CHEM (𝐷 = 16). The BHL-tree is also slightly faster than Pkd-tree in 10-NN on CHEM. The BHL-tree
is the best baseline on these datasets, but it is still 1.89–13.3× slower in construction and 1.37–27.6×
slower in query than the Pkd-tree, except for 10-NN in CHEM, where it is 1.06× faster than the

Pkd-tree.
Dynamic Updates. The points from OpenStreetMap (OSM) [45] are associated with time stamps,

so we acquire the batch of updates per year (2014 to 2023) to compare the performance of batch

updates. We simulate a sliding-window setting. We start with building a tree of the data in 2014.

In each year, we insert the corresponding batch, and delete the batch 5 years ago if applicable.

After the update of each year, we perform a 10-NN query on another 10
7
points. Fig. 7 presents the

performance for all tested algorithms.

Pkd-trees significantly outperform all baselines in all batch updates. For insertions, Pkd-trees
is 1.82–9.55× faster than Log-trees, 3.81–12.0× than BHL-trees and 58.3–214× than CGAL. For
deletions, Pkd-tree outperforms the fastest baseline Log-tree by 2.44–4.55×. For 𝑘-NN queries,

Pkd-tree, BHL-tree, and CGAL have similar performance. The Pkd-tree is slightly faster due to

various optimizations (e.g., avoiding storing bounding boxes). Log-tree can be much slower than

other implementations due to the use of 𝑂 (log𝑛) trees. These conclusions are consistent with the

results on synthetic datasets shown in Sec. 6.1.

6.3 In-Depth Performance Study
Cache Efficiency andMemory Usage for Tree Construction. One major effort in our work is to

achieve low cache complexity for construction of Pkd-trees. In this section, we quantitatively verify

this and show that the cache-efficiency indeed contributes to the high performance of Pkd-trees.
Fig. 8 shows the numbers of cache misses in tree construction for all implementations, along with

the memory usage, which is also crucial for practical performance.

The results verified that our performance gain is consistent with the reduction of the cache

misses, demonstrating the importance of cache-efficiency in parallel algorithms. Pkd-trees incur
6–12× less cache misses than BHL-trees or Log-trees, which is close to the speedup of Pkd-tree
over BHL-tree or Log-tree in construction. The reported cache misses in 1000M-3D-V construction

indicates over 80% of the memory bandwidth usage of the testing machine. We also verify this

using the Intel® VTune profiler [50]. On our machine with a peak memory bandwidth of 443.78

GB/s, Pkd-tree has a 327–421 GB/s usage of bandwidth in many stages during construction and

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:18 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Fig. 8. Time, cache misses, and memory usage needed during the tree construction. Lower is better.
Plots are in log-log scale. All points are in 3 dimensions.

update. This indicates that our construction and update algorithms are memory bottlenecked, and

optimizing the cache complexity almost linearly contributes the performance.

Study of the Impact of Bounding Boxes. As mentioned, Pkd-trees avoid storing bounding boxes
within tree nodes, but compute them on-the-fly, whichmay be looser than the actual bounding boxes

of the subtree. Therefore, Pkd-tree reduces memory accesses and memory usage in construction

and batch updates, but may introduce additional computation and tree traversal during queries. To

study this trade-off, we measure the Pkd-tree and its variant storing bounding boxes (referred to as

Pkd-bb) in terms of range report queries on real-world datasets. Tab. 5 shows the time, instruction

per cycle (IPC), cache references (CRs) and cache-misses (CMs), as well as the average number of

nodes visited per query. We present the full results with more profiling results in the full paper [63].

Pkd-bb allows for more effective prune, evidenced by the fewer number of nodes visited during

search. This benefit is more significant on high-dimensional datasets HT, HH and CHEM. Due to

visiting fewer nodes, on these three datasets, Pkd-bb also has lower cache references and cache

misses, and is thus faster. On low-dimensional datasets CM and OSM, the difference between the

computed subspaces and bounding boxes is small. In this case, Pkd-tree and Pkd-bb visited similar

numbers of tree nodes. Thus, Pkd-tree achieves lower time than Pkd-bb in queries due to fewer

memory accesses.

6.4 Technique Analysis for Tree Construction
In Alg. 1, we mainly employed two techniques to improve the cache-efficiency: 1) building 𝜆

levels at a time to save total data movements, and 2) using sampling to determine splitters to save

memory accesses. To test these two techniques, we measure the time and the cache misses in tree

construction using three versions of Pkd-trees with different levels of optimizations: 1) the final

version with sampling and 𝜆 = 6 (red bars), 2) constructing one level at a time using sampling, i.e.,

𝜆 = 1 (blue bars) and 3) constructing one level at a time without sampling, i.e., 𝜆 = 1 and finding

exact median in parallel (yellow bars). All benchmarks have 10
9
points in 3 dimensions. Results

are presented in Fig. 6. By comparing the red and blue bars, we observe that building multiple

levels reduces running time by 2.91–4.31× and cache misses by 3.8× for both distributions. The

difference between the blue and yellow bars indicates that sampling improves the time by about

1.86× and reduces cache misses by about 1.9×. The improvement in running time is consistent

with the reduction of cache misses. This verifies that the high performance of our construction

algorithm indeed comes from the better cache efficiency enabled by the two techniques.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:19

Tree Time(sec.) # Leaf # Interior IPC CRs(M) CMs(M)

H
T

Pkd .587 2,675 3,957 .326 926 508

Pkd-bb .268 207 891 .506 245 134

H
H

Pkd .385 2,817 3,621 .320 557 361

Pkd-bb .192 615 1,135 .387 242 150

C
H
E
M Pkd 1.15 4,276 5,701 .271 1,662 1,450

Pkd-bb .837 1,330 2,506 .235 954 820

G
L

Pkd .329 3,268 5,478 .303 439 345

Pkd-bb .291 1,285 3,484 .215 407 317

C
M

Pkd .531 2,456 3,939 .186 692 649

Pkd-bb .577 2,195 3,785 .165 752 703

O
S
M

Pkd .326 529 1,243 .171 460 426

Pkd-bb .363 236 959 .148 473 441

Table 5. Performance comparison of the original Pkd-tree (Pkd) and a variant with bounding boxes
(Pkd-bb) for range report queries on real-world datasets. The best performance is underlined. The
query contains 10

4
range report queries with output size 10

4
–10

6
. “Time”: Time for all queries in seconds,

“Leaf”: Average number of leaf nodes visited per query, “Interior”: Average number of interior nodes visited

per query, “IPC”: Instructions per cycle, “CR”: Cache reference, “CMs”: Cache misses.

6.5 Balancing Parameter Revisited
One of the core ideas of the Pkd-tree is to relax the strong balancing criterion to achieve much

better performance in construction and updates. This may increase the tree height and affect the

query performance to some extent, and the trade-off is controlled by the parameter 𝛼 . In this

section, we systematically study the choice of 𝛼 and the corresponding impact on the performance.

To do this, we create adversarial inputs such that belated rebalancing may result in a large tree

height. We generate skewed batch sequences and insert them into an empty tree by 1000 batches.

After each update, we perform queries to see how the imbalance affects the query performance.

We test 𝛼 in a full range from 0.01 (almost always rebalance on updates) to 0.50 (no rebalancing;

siblings can be arbitrarily different). We generated multiple distributions and show two of the most

representative ones in the paper:

• TYPE I: one instance of the 3D-V-1000M dataset.

• TYPE II: concatenation of one instance from 3D-U-100M and another one from 3D-V-900M.

We observe that TYPE I is adversarial since the Varden is generated by a random-walk plus

random jump process. By cutting the stream into 1000 batches, different dense areas (clusters) are

added to the tree in-order, which will trigger frequent rebalancing for the Pkd-trees (otherwise the
tree quality can degenerate significantly). TYPE II, as well as most of the other distributions are

more resistant to large 𝛼 values—the initial tree are generated on a Uniform distribution, providing
a roughly even partition of the space—belated rebalancing does not affect the tree quality as much

as TYPE I.

Fig. 9 demonstrates the construction and 1-NN time w.r.t. the balancing parameter 𝛼 . The “rebuild

size” (yellow bars) denotes the cumulative size of the subtrees that are reconstructed throughout all

batch insertions. This value is normalized to the final tree size, 10
9
. The “incremental update time”

is to construct a tree by inserting 1000 batches incrementally. We normalize the construction time

to that if we directly build a tree once using all the points. After each batch insertion, we perform

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:20 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Fig. 9. Normalized rebuild size, update and query times with varying balancing parameter 𝛼 . Lower
is better. The dataset contains 109 points in 3D, divided into 1000 batches, and incrementally inserted into

an initially empty tree. The “rebuild size” (yellow bars, left axis) denotes the total number of tree nodes

involved in reconstructions, normalized to the final tree size. The total insertion time (green line, right axis)

is normalized to that of building a tree directly from the input. After each of the 1000 batch insertions, we

perform 1-NN queries for 1M points from the Uniform distribution. The blue and red lines (right axis) show

the geometric mean and maximum time among the 1000 queries respectively, normalized to the query time on

a perfectly-balanced tree on the same set of points.

1-NN queries for a batch of another 1M points generated uniformly at random. We normalize the

query time to that on a perfectly balanced tree with the same set of points to illustrate the impact

of imbalance. Among all the 1000 batch queries, we record the maximum normalized query time

by the blue rectangles in Fig. 9, which roughly represents the “worst-case” query time, and the

geometric mean, which represents the “average case”. We use 𝑥/𝑦 = (0.5 − 𝛼)/(0.5 + 𝛼) in the

figure to indicate the degree of balance controlled by 𝛼 , which means that two sibling subtrees can

differ by at most 𝑥 : 𝑦. We pick 1-NN query here since the 1-NN query performance is the most

sensitive to how balance the 𝑘d-tree is, among all queries types tested in this paper.

For both input sequences, the overall trend for the incremental construction time decreases when

less rebalance is required, since rebalancing is triggered less frequently. There is a slight rebound

when the subtrees are excessively unbalanced (1/99 or worse)—the cost of traversing the tree in

batch insertion also increases when the tree becomes skewed. For queries, an unbalanced tree can

significantly slow down the performance, as the searches need to go much deeper in the tree to

touch the incident points.

Overall, the query performance is stable for a reasonably large range of 𝛼 . The worst-case

performance is negligibly affected all the way up to 30/70 (𝛼 = 0.2), and the average-case overhead

is small until 10/90 (𝛼 = 0.4). However, when we further relax the balancing criterion, then the

performance can degenerate greatly on TYPE I—up to 4.48× slowdown on average for 𝛼 = 0.5.

The performance may still be reasonable on instances such as TYPE II. To ensure better query

performance in general, we choose 𝛼 = 0.3 (i.e., 20/80) as the default setting in Pkd-tree since it
achieves a good tradeoff for the construction, update and query performance.

We also report the running time of batch updates with three specific values of 𝛼 ∈ {0.03, 0.1, 0.3}
with comparison to all baselines in the full paper [63].

6.6 Parallel Scalability
We test the scalability for the tree construction and batch updates of Pkd-tree and other baselines

on both 3D-U-1000M and 3D-V-1000M. We normalize all running time to the Pkd-tree on one core,

and show the scalability in Fig. 10. The Pkd-tree overall has very good scalability. For Uniform, the
Pkd-tree achieves 37.3× self-relative speedup in construction, 59.3× in batch insertion and 52.4×
in batch deletion using 96 cores. The numbers for Varden is 35.9× in tree construction, 25.3× in

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:21

Fig. 10. Normalized parallel speedup of operations on Uniform and Varden for the Pkd-tree and
other baselines on varying numbers of processors. Higher is better. The curves show relative running

time on different number of threads normalized to the Pkd-tree on one thread. The benchmark contains 1000M

points in 3D. The “batch insert” inserts another 10M points from the same distribution into the tree, and the

“batch delete” removes 10M points from the tree. “96h”: 96 cores with hyper-threads. There is no data for

CGAL in batch delete since it deletes points sequentially.

batch insertion, and 37.8× in batch deletion. The speedup on Varden is lower in batch updates

since the new points are unevenly distributed in the subtrees, resulting in more challenges in load

balancing in constructing subtrees with various sizes. Both Log-trees and BHL-trees have also
shown good parallel speedup, while the performance difference is mainly due to the slow sequential

(1 core) performance compared to the Pkd-tree. The main reason that causes the advantage is the

carefully-designed sieving algorithm introduced in Sec. 3, which is used in both construction and

updates. The only implementation that does not scale well is CGAL, which was also observed in

previous work [14]. CGAL only parallelizes the process of building two subtrees, but finds the

splitters and partitions points into subtrees sequentially, limiting its parallelism.

7 Related Work
In this section, we review the literature of the 𝑘d-tree, with a summary of the most relevant ones

in Tab. 6. The original algorithm proposed by Bentley et al. [10, 34] does not include a rebalancing

scheme, and assumes either static data, or inserting keys in a random order. Since then, researchers

have been developing rebalancing schemes for 𝑘d-trees, mainly in the two categories: logarithmic
method, and partial rebuild. The logarithmic method was first proposed by Bentley in [11], and has

been followed up by later work, including optimizing the cache bounds [2, 68] and parallelism [85].

However, as shown in Tab. 3, maintaining 𝑂 (log𝑛) trees in the logarithmic method hampers

the query efficiency significantly. Another issue for this method is that insertions and deletions

are asymmetric and need to be handled by different approaches, which is more complicated. An

alternative idea is to maintain a single tree and partially rebuild the unbalanced subtrees, which

was proposed by Overmars [65]. Many papers followed up this idea, such as the KDB-tree [71],

scapegoat 𝑘-d tree [36], ikd-tree [24], and the divided 𝑘-d tree [84]. Among them, only KDB-tree is

cache-optimized. None of them considered parallelism.

There have been many attempts to optimize the cache (or I/O) efficiency for 𝑘d-trees. Early work

simply considers flattening the binary structure into a B-tree-like multiple-way tree [68, 71]. These

papers are optimized for disk I/Os, and do not consider parallelism or batch updates. Procopiuc et al.

[68] gave a (sequential) cache-efficient 𝑘d-tree construction algorithm, and dynamized the 𝑘d-tree

using the logarithmic method. Agarwal et al. [2] showed how to construct a cache-oblivious 𝑘d-tree

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:22 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

Layout & Update Balancing Criteria Cache (I/O) Opt.

1975 Bentley [10] Seq.

Single tree; No rebalancing No balance -

Note: Proposed 𝑘d-tree

1978 Bentley [11] Seq.

Log-method; Tree merging Perfectly balanced -

Note: Proposed logarithmic method

1980 kdb-tree [71] Seq. B-tree; Overflow/underflow Not shown • B-tree layout

1983 Overmars [65] Seq. Single tree; Partial rebuild
Relaxed (weight

balanced)
-

2003 Bkd-tree [68] Seq. Log-method; Tree merging Perfectly balanced
• Cache opt. construction

• Cache opt. point update

2003 Agarwal et
al. [2] Seq. Log-method; Tree merging Perfectly balanced

• Cache opt. construction

• Cache opt. point update

• vEB layout

2016 Agarwal et
al.[1] Dist.

Single tree; Static (no

update)
Relaxed (randomized) -

Note: Sampling and multi-level construction

2020 CGAL [82] Par.

Single tree; Full rebuild

(sequential deletion)
Perfectly balanced Leaf wrap

Note: “CGAL” is tested in Sec. 6. The implementation is available at [83]

2021 ikd-tree [24] Seq.
Single tree; Partial rebuild

(lazy deletion)

Relaxed (weight

balanced)
-

2021 ParGeo [85] Par.

Log-method; Tree merging

(lazy deletion)
Perfectly balanced

• Leaf wrap

• vEB layout

Note: “Log-tree” is tested in Sec. 6. The implementation is available at [86]

2021 ParGeo [85] Par.

Single tree; Full rebuild Perfectly balanced • Leaf wrap

Note: “BHL-tree” is tested in Sec. 6. The implementation is available at [86]

This paper
(Pkd-tree) Par.

Single tree; Partial rebuild

Relaxed (weight

balanced,

randomized)

• Leaf wrap

• Cache opt. construction

• Cache opt. batch update

Note: Sampling and multi-level construction. Available implementation [62]

Table 6. Summary of related work. “Log-method”: logarithmic method (using 𝑂 (log𝑛) 𝑘d-trees). “Seq.”:
sequential; “Par.”: parallel; “Dist.”: distributed. “Cache opt.”: optimized for cache (or I/O) efficiency. Some of

the designs are optimized for disk I/Os, but algorithmically the optimizations for disks or caches are almost

identical. Therefore, we also denote both of them as “cache-opt.” in this table.

using the vEB layout [9]. Motivated by Procopiuc et al. [68], Wang et al. [85] proposed parallel

batch update algorithms on 𝑘d-trees, and implemented them as the Log-tree in the ParGeo library

(called BDL-tree in their paper). However, Wang et al. [85] did not show the cache complexity for

their parallel construction or update algorithms.

There exist parallel 𝑘d-tree algorithms, but most of them are not cache-friendly or do not support

a full interface. Parallel construction for static 𝑘d-trees has been well studied, mainly in two

approaches. The first approach [23, 25, 88] is to presort all points in all 𝐷 dimensions in parallel.

To compute the partition hyperplane, the median of the corresponding dimension is selected,

and all elements are stably partitioned into two subtrees and recursively constructed. The second

approach [4, 28, 48, 70, 76] finds the median as the splitter on the fly, and then constructs the

sub-trees recursively in parallel. Reif and Neumann’s work [70] also proposed to support range-join

using a 𝑘d-tree algorithm with the second approach. Some of them also use sampling [4, 48] or

constructing multiple levels [1, 38]. Agarwal et al. [1] showed a distributed algorithm for static

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:23

𝑘d-trees, which also uses sampling and multi-level construction to optimize the number of rounds

in the MPCmodel. However, they did not show cache or span bounds, and have no implementations.

These approaches do not directly support updates. Although the 𝑘d-tree in CGAL [82] supports

updates, it simply rebuilds the tree after updates, which is inefficient. The ParGeo library [85]

provides several 𝑘d-tree implementations, among which Log-trees and BHL-trees are generally
the fastest. The BHL-tree is based on a single 𝑘d-tree, which fully rebuilds the tree on updates.

The Log-tree uses the logarithmic method as discussed above to support parallel batch updates.

We compared to both of them in Sec. 6. There also exist concurrent 𝑘d-trees [26, 49] that achieve

linearizability and lock-freedom. Our work focuses on batch-parallel setting, which aims to support

a batch of insertions or deletions with good work, span, and cache bounds.

There have been other data structures for multi-dimensional data such as R-trees (e.g., [7, 44,

53, 67, 89]) and quad/octrees (e.g., [14]). Most of them do not support parallel updates. There exist

papers on parallel R-trees, such as on GPUs [67, 89] and on disks [7, 53]. However, we are unaware

of open-source in-memory implementations that support parallel construction and updates. This is

probably not surprising, given that the main use cases for R-tree are for external memory while the

thread-level in-memory parallelism is a less relevant optimization. For completeness, we compare

the Pkd-tree with the sequential R-tree in Boost [72] in tree construction, 𝑘-NN and range report

in the full paper [63]. A recent paper [14] developed batch-parallel quad/octrees called Zd-trees.
However, through the correspondence with the authors, we confirmed that the released version

has correctness issues in batch updates, so we cannot compare to their batch-update performance.

We give a comparison to their construction time and 𝑘-NN time in the full paper [63].

8 Conclusion
We present Pkd-tree, a parallel 𝑘d-tree that has strong theoretical guarantees in work, span,

and cache complexity for tree construction and batch update, as well as high performance in

practice. Our main techniques include sampling, multi-level construction, the sieving algorithm,

and the weight-balance scheme to holistically optimize the work, span, cache-efficiency in both

constructions and updates. In this way, our approach relaxes the balancing criteria by a controllable

manner, which allows for overall good performance considering construction, update, and various

queries. In our experiments, the Pkd-tree significantly outperforms all the existing parallel 𝑘d-tree

implementations on construction and updates, with competitive or better query performance.

9 Acknowledgements
This work is supported by NSF grants CCF-2103483, TI-2346223 and IIS-2227669, NSF CAREER

Awards CCF-2238358 and CCF-2339310, the UCR Regents Faculty Development Award, and the

Google Research Scholar Program.

References
[1] Pankaj Agarwal, Kyle Fox, Kamesh Munagala, and Abhinandan Nath. 2016. Parallel algorithms for constructing range

and nearest-neighbor searching data structures. In Principles of Database Systems (PODS). 429–440.
[2] Pankaj K Agarwal, Lars Arge, Andrew Danner, and Bryan Holland-Minkley. 2003. Cache-oblivious data structures for

orthogonal range searching. In Proceedings of the nineteenth annual symposium on Computational geometry. 237–245.
[3] Alok Aggarwal and S Vitter, Jeffrey. 1988. The input/output complexity of sorting and related problems. Commun.

ACM 31, 9 (1988), 1116–1127.

[4] I Al-Furajh, Srinivas Aluru, Sanjay Goil, and Sanjay Ranka. 2000. Parallel construction of multidimensional binary

search trees. IEEE Transactions on Parallel and Distributed Systems 11, 2 (2000), 136–148.
[5] Arne Andersson. 1989. Improving partial rebuilding by using simple balance criteria. In Workshop on Algorithms and

Data Structures (WADS). Springer, 393–402.
[6] Lars Arge, Gerth Stølting Brodal, and Rolf Fagerberg. 2004. Cache-Oblivious Data Structures. Handbook of Data

Structures and Applications 27 (2004).
[7] Lars Arge, Klaus H Hinrichs, Jan Vahrenhold, and Jeffrey Scott Vitter. 2002. Efficient bulk operations on dynamic

R-trees. Algorithmica 33 (2002), 104–128.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

62:24 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

[8] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 2001. Thread scheduling for multiprogrammed multiprocessors.

Theory of Computing Systems (TOCS) 34, 2 (2001), 115–144.
[9] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. 2000. Cache-oblivious B-trees. In focs. IEEE, 399–409.
[10] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9

(1975), 509–517.

[11] Jon Louis Bentley. 1979. Decomposable searching problems. Inform. Process. Lett. 8, 5 (1979), 244–251.
[12] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. IEEE Trans. on Comput. 38, 11 (1989).
[13] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib — a toolkit for parallel algorithms on

shared-memory multicore machines. In ACM Symp. on Parallelism in Algorithms and Architectures (SPAA). 507–509.
[14] Guy E Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neighbors in Low Dimensions with Batch Updates. In

Algorithm Engineering and Experiments (ALENEX). SIAM, 195–208.

[15] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for Parallel Ordered Sets. In ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA).

[16] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel algorithms in the binary-forking

model. In ACM Symp. on Parallelism in Algorithms and Architectures (SPAA). 89–102.
[17] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In

ACM Symp. on Parallelism in Algorithms and Architectures (SPAA).
[18] Guy E. Blelloch and Yan Gu. 2020. Improved Parallel Cache-Oblivious Algorithms for Dynamic Programming. In SIAM

Symp. on Algorithmic Principles of Computer Systems (APOCS).
[19] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel Write-Efficient Algorithms and Data Structures for

Computational Geometry. In ACM Symp. on Parallelism in Algorithms and Architectures (SPAA).
[20] Benjamin Blonder, Cecina Babich Morrow, Brian Maitner, David J Harris, Christine Lamanna, Cyrille Violle, Brian J

Enquist, and Andrew J Kerkhoff. 2018. New approaches for delineating n-dimensional hypervolumes. Methods in
Ecology and Evolution 9, 2 (2018), 305–319.

[21] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient Scheduling of Multithreaded Computations. SIAM J.
on Computing 27, 1 (1998).

[22] Christian Böhm, Stefan Berchtold, and Daniel A Keim. 2001. Searching in high-dimensional spaces: Index structures

for improving the performance of multimedia databases. ACM Computing Surveys (CSUR) 33, 3 (2001), 322–373.
[23] Russell A Brown. 2014. Building a balanced kd tree in o (kn log n) time. arXiv preprint arXiv:1410.5420 (2014).
[24] Yixi Cai, Wei Xu, and Fu Zhang. 2021. ikd-tree: An incremental kd tree for robotic applications. arXiv preprint

arXiv:2102.10808 (2021).
[25] Yu Cao, Xiaojiang Zhang, Boheng Duan, Wenjing Zhao, and Huizan Wang. 2020. An improved method to build the

KD tree based on presorted results. In Int’l Conf. on Software Engineering and Service Science (ICSESS). IEEE, 71–75.
[26] Bapi Chatterjee, Ivan Walulya, and Philippas Tsigas. 2018. Concurrent linearizable nearest neighbour search in lock

free-kd-tree. In Proceedings of the 19th Int’l Conf. on Distributed Computing and Networking. 1–10.
[27] Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, and Xiaohui Xie. 2016. Gene expression inference with deep

learning. Bioinformatics 32, 12 (2016), 1832–1839.
[28] Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L Bocchino Jr, Sarita V Adve, and John C Hart. 2010.

Parallel SAH kD tree construction. In High performance graphics. Citeseer, 77–86.
[29] Zhenyun Deng, Xiaoshu Zhu, Debo Cheng, Ming Zong, and Shichao Zhang. 2016. Efficient kNN classification algorithm

for big data. Neurocomputing 195 (2016), 143–148.

[30] Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022. PaC-trees: Supporting Parallel and Compressed

Purely-Functional Collections. In ACM Conf. on Programming Language Design and Implementation (PLDI).
[31] Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2024. Parallel Integer Sort: Theory and Practice. In ACM

Symp. on Principles and Practice of Parallel Programming (PPOPP).
[32] Xiaojun Dong, Yunshu Wu, Zhongqi Wang, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2023. High-Performance

and Flexible Parallel Algorithms for Semisort and Related Problems. In ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA).

[33] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. 2015. Reservoir computing compensates slow

response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sensors and
Actuators B: Chemical 215 (2015), 618–629.

[34] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm for finding best matches in

logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3, 3 (1977), 209–226.
[35] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 1999. Cache-Oblivious Algorithms. In

IEEE Symp. on Foundations of Computer Science (FOCS).
[36] Igal Galperin and Ronald Rivest. 1993. Scapegoat Trees.. In ACM-SIAM Symp. on Discrete Algorithms (SODA), Vol. 93.

165–174.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

Parallel 𝑘d-tree with Batch Updates 62:25

[37] Junhao Gan and Yufei Tao. 2017. On the hardness and approximation of Euclidean DBSCAN. ACM Transactions on
Database Systems (TODS) 42, 3 (2017), 1–45.

[38] Kirill Garanzha, Simon Premože, Alexander Bely, and Vladimir Galaktionov. 2011. Grid-based SAH BVH construction

on a GPU. The Visual Computer 27 (2011), 697–706.
[39] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM Comput. Surv. 25, 2 (1993), 73–170.
[40] Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023. Parallel Longest Increasing Subsequence and van

Emde Boas Trees. In ACM Symp. on Parallelism in Algorithms and Architectures (SPAA).
[41] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-Stealing and Parallel Cache Complexity. In SIAM

Symp. on Algorithmic Principles of Computer Systems (APOCS). SIAM, 46–60.

[42] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu, and Jianwei Wan. 2013. Rotational projection statistics

for 3D local surface description and object recognition. Int’l journal of computer vision 105 (2013), 63–86.

[43] Ralf Hartmut Güting. 1994. An introduction to spatial database systems. the VLDB Journal 3 (1994), 357–399.
[44] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching. In ACM SIGMOD Int’l Conf. on

Management of Data (SIGMOD). 47–57.
[45] Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated street maps. IEEE Pervasive computing 7,

4 (2008), 12–18.

[46] Georges Hebrail and Alice Berard. 2012. Individual household electric power consumption. UCI Machine Learning

Repository. DOI: https://doi.org/10.24432/C58K54.

[47] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa, Nikolai F Rulkov, and Irene Rodriguez-Lujan. 2016. Online

decorrelation of humidity and temperature in chemical sensors for continuous monitoring. Chemometrics and
Intelligent Laboratory Systems 157 (2016), 169–176.

[48] Warren Hunt, William R Mark, and Gordon Stoll. 2006. Fast kd-tree construction with an adaptive error-bounded

heuristic. In IEEE Symp. on Interactive Ray Tracing. IEEE, 81–88.
[49] Jeffrey Ichnowski and Ron Alterovitz. 2020. Concurrent nearest-neighbor searching for parallel sampling-based motion

planning in SO (3), SE (3), and euclidean spaces. In Algorithmic Foundations of Robotics XIII: Proceedings of the 13th
Workshop on the Algorithmic Foundations of Robotics 13. Springer, 69–85.

[50] Intel Corporation. 2024. VTune Profiler. https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-

profiler.html

[51] Intel Threading Building Blocks [n. d.]. Intel Threading Building Blocks (TBB). https://www.threadingbuildingblocks.

org.

[52] Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete. 2017. A progressive kd tree for approximate k-nearest neighbors. In

2017 IEEE Workshop on Data Systems for Interactive Analysis (DSIA). IEEE, 1–5.
[53] Ibrahim Kamel and Christos Faloutsos. 1992. Parallel R-trees. ACM SIGMOD Int’l Conf. on Management of Data

(SIGMOD) 21, 2 (1992), 195–204.
[54] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu. 2002.

An efficient k-means clustering algorithm: Analysis and implementation. IEEE transactions on pattern analysis and
machine intelligence 24, 7 (2002), 881–892.

[55] Jiaxin Li, Ben M Chen, and Gim Hee Lee. 2018. So-net: Self-organizing network for point cloud analysis. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 9397–9406.

[56] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019. Graph matching networks for learning

the similarity of graph structured objects. In Int’l conference on machine learning. PMLR, 3835–3845.

[57] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means clustering algorithm. Pattern recognition
36, 2 (2003), 451–461.

[58] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geoffrey J Gordon. 2018. Query-

based workload forecasting for self-driving database management systems. In Proceedings of the 2018 Int’l Conf. on
Management of Data. 631–645.

[59] Mengfan Ma, Ziyang Men, André Rossi, Yi Zhou, and Mingyu Xiao. 2023. A vertex-separator-based integer linear

programming formulation for the partitioned Steiner tree problem. Computers & Operations Research 153 (2023),

106151.

[60] Yu AMalkov and Dmitry A Yashunin. 2018. Efficient and robust approximate nearest neighbor search using hierarchical

navigable small world graphs. IEEE transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.
[61] Leland McInnes and John Healy. 2017. Accelerated hierarchical density based clustering. In 2017 IEEE Int’l Conf. on

Data Mining Workshops (ICDMW). IEEE, 33–42.
[62] Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2024. Parallel 𝑘d-tree with Batch Updates. https://github.com/

ucrparlay/Pkd-tree.

[63] Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2024. Parallel 𝑘d-tree with Batch Updates. arXiv:2411.09275 [cs.DS]

https://arxiv.org/abs/2411.09275

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
https://github.com/ucrparlay/Pkd-tree
https://github.com/ucrparlay/Pkd-tree
https://arxiv.org/abs/2411.09275
https://arxiv.org/abs/2411.09275

62:26 Ziyang Men, Zheqi Shen, Yan Gu, & Yihan Sun

[64] Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms for high dimensional data. IEEE transactions
on pattern analysis and machine intelligence 36, 11 (2014), 2227–2240.

[65] Mark H Overmars. 1983. The design of dynamic data structures. Vol. 156. Springer Science & Business Media.

[66] Mark H Overmars and Jan Van Leeuwen. 1981. Maintenance of configurations in the plane. Journal of computer and
System Sciences 23, 2 (1981), 166–204.

[67] Sushil K Prasad, Michael McDermott, Xi He, and Satish Puri. 2015. GPU-based Parallel R-tree Construction and

Querying. In 2015 IEEE Int’l Parallel and Distributed Processing Symp. Workshop. IEEE, 618–627.
[68] Octavian Procopiuc, Pankaj K Agarwal, Lars Arge, and Jeffrey Scott Vitter. 2003. Bkd-tree: A dynamic scalable kd-tree.

In Int’l Symp. on Spatial and Temporal Databases (SSTD). Springer, 46–65.
[69] Sanguthevar Rajasekaran and John H. Reif. 1989. Optimal and sublogarithmic time randomized parallel sorting

algorithms. SIAM J. on Computing 18, 3 (1989), 594–607.

[70] Maximilian Reif and Thomas Neumann. 2022. A scalable and generic approach to range joins. Proceedings of the VLDB
Endowment 15, 11 (2022), 3018–3030.

[71] John T Robinson. 1981. The KDB-tree: a search structure for large multidimensional dynamic indexes. In ACM SIGMOD
Int’l Conf. on Management of Data (SIGMOD). 10–18.

[72] Boris Schäling. 2011. The boost C++ libraries. Boris Schäling.
[73] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN revisited, revisited:

why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS) 42, 3 (2017), 1–21.
[74] Nick Scoville, H Aussel, Marcella Brusa, Peter Capak, C Marcella Carollo, M Elvis, M Giavalisco, L Guzzo, G Hasinger,

C Impey, et al. 2007. The cosmic evolution survey (COSMOS): overview. The Astrophysical Journal Supplement Series
172, 1 (2007), 1.

[75] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. 2005. Nearest-neighbor methods in learning and vision: theory
and practice. Vol. 3. MIT press Cambridge, MA, USA:.

[76] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin. 2007. Highly parallel fast KD-tree construction for

interactive ray tracing of dynamic scenes. In Computer Graphics Forum, Vol. 26. Wiley Online Library, 395–404.

[77] Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka, André CPLF de Carvalho, and Joã o Gama.

2013. Data stream clustering: A survey. ACM Computing Surveys (CSUR) 46, 1 (2013), 1–31.
[78] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized Efficiency of List Update and Paging Rules. Commun. ACM 28,

2 (1985), 7 pages. https://doi.org/10.1145/2786.2793

[79] Mark William Smith, Jonathan L Carrivick, and Duncan J Quincey. 2016. Structure from motion photogrammetry in

physical geography. Progress in physical geography 40, 2 (2016), 247–275.

[80] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. 2018. PAM: Parallel Augmented Maps. In ACM Symp. on Principles
and Practice of Parallel Programming (PPOPP).

[81] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing large-scale and high-dimensional data. In

Proceedings of the 25th international conference on world wide web. 287–297.
[82] The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/

Manual/packages.html

[83] The CGAL Project. 2024. CGAL Implementation. https://github.com/CGAL/cgal.

[84] Marc J van Kreveld and Mark H Overmars. 1991. Divided kd trees. Algorithmica 6 (1991), 840–858.
[85] YiqiuWang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational

geometry. In European Symp. on Algorithms (ESA).
[86] YiqiuWang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational

geometry. https://github.com/ParAlg/ParGeo.

[87] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast parallel algorithms for euclidean minimum spanning tree

and hierarchical spatial clustering. In ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD). 1982–1995.
[88] Hiroki Yamasaki, Atsushi Nunome, and Hiroaki Hirata. 2018. Parallelizing the Construction of a k-Dimensional Tree.

In 2018 IEEE Int’l Conf. on Big Data, Cloud Computing, Data Science & Engineering (BCD). IEEE, 23–30.
[89] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial query processing on gpus using r-trees. In

Proceedings of the 2Nd ACM SIGSPATIAL international workshop on analytics for big geospatial data. 23–31.
[90] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. 2016. Healthcare data gateways: found healthcare

intelligence on blockchain with novel privacy risk control. Journal of medical systems 40 (2016), 1–8.
[91] Yu Zheng, Like Liu, LonghaoWang, and Xing Xie. 2008. Learning transportation mode from raw gps data for geographic

applications on the web. In Int’l World Wide Web Conf. (WWW). 247–256.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 62. Publication date: February 2025.

https://doi.org/10.1145/2786.2793
https://doc.cgal.org/5.1/Manual/packages.html
https://doc.cgal.org/5.1/Manual/packages.html
https://github.com/CGAL/cgal
https://github.com/ParAlg/ParGeo

	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallel Algorithm for Tree Construction
	3.1 Algorithms Description
	3.2 Theoretical Analysis

	4 Parallel Algorithms for Batch Updates
	4.1 Batch Insertion
	4.2 Batch Deletion
	4.3 Theoretical Analysis

	5 Implementation Details
	6 Experiments
	6.1 Operations on Synthetic Datasets
	6.2 Real-World Datasets
	6.3 In-Depth Performance Study
	6.4 Technique Analysis for Tree Construction
	6.5 Balancing Parameter Revisited
	6.6 Parallel Scalability

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

