
Parallel Algorithms and
Implementations

CS260 – Algorithmic
Engineering

Yihan Sun

Algorithmic engineering
– make your code faster

2

Ways to Make Code Faster

• Cannot rely on the
improvement of hardware
anymore

• Use multicores!

3

4

Shared-memory

Multi-core

Parallelism

Ways to Make Code Faster: Parallelism

5

Shared-memory

Multi-core

Parallelism

Multiple processors collaborate to get a task done

(And avoid any contention between them)

(Pictures from 9gag.com)

Theory Practice

6

Multi-core Programming: Theory and Practice

Memory leaking!

Memory leaking: memory which is no longer

needed is not released

(Pictures from 9gag.com)

Theory Practice

7

Multi-core Programming: Theory and Practice

Memory leaking!

Deadlock!

Deadlock: a state in which each member of

a group is waiting for another member,

including itself, to take action, such as

releasing a lock

(Pictures from 9gag.com)

Theory Practice

8

Multi-core Programming: Theory and Practice

Memory leaking!

Data Race

Deadlock!

Data Race: Two or more processors are

accessing the same memory location, and

at least one of them is writing

(Pictures from 9gag.com)

Theory Practice

9

Multi-core Programming: Theory and Practice

Memory leaking!

Data Race

Missing the 10th dog! Did it become a zombie???

Deadlock!

Zombie process: a process that has

completed execution but still has an entry

in the process table

Parallel programming

10

• Not let this to happen →

• Write code that is
• High performance

• Easy to debug

Make parallelism simple – some basic concepts

• Shared memory
• All processors share the memory

• They may or may not share caches – will be covered later

• Design parallel algorithms without knowing the number of
processors available

• It’s generally hard to know # available processors

• Scheduler: bridge your algorithm and the OS
• Your algorithm specifies the logical dependency of parallel tasks

• The scheduler maps them to processors
• Usually also dynamic

11

How can we write parallel programs?

12

What your program tells the scheduler

• Fork-join model
• At any time, your program can fork a

number of tasks and let some parallel
threads execute them

• After they all return, they are
synchronized by a join operation

• Fork-join can be nested

• Most commonly used primitives
• Execute two tasks in parallel (parallel_do)

• Parallel for-loop: execute 𝑛 tasks in
parallel (parallel_for)

13

Fork-join parallelism

• Supported by many
programming languages

• Cilk/cilk+ (silk – thread)
• Based on C++

• Execute two tasks in parallel
• do_thing_1 can be done in parallel in

another thread

• do_thing_2 will be done by the current
thread

• Parallel for-loop: execute 𝑛 tasks in
parallel

• For cilk, it first forks two tasks, then four,
then eight, … in O(log n) rounds

14

cilk_spawn do_thing_1;
do_thing_2;
cilk_sync;

cilk_for (int i = 0; i < n; i++) {
do_something;

}

#include <cilk/cilk.h>
#include <cilk/cilk_api.h>

Fork

Join

As long as you can design a parallel algorithm in fork-join,

implementing them requires very little work on top of your

sequential C++ code

Cilk

• The name comes from silk because “silk and thread”

• A quick brain teaser: what is the difference/common things
between string and thread?

• If you don’t know what am asking / find they have nothing in common, you
must be a programmer

• They are both thin, long cords

15

Fork-join parallelism

• A lightweighted library: PBBS (Problem-based benchmark suite)

• Code available at: https://github.com/cmuparlay/pbbslib

16

#include “pbbslib/utilities.h”

par_do([&] () {do_thing_1;},
[&] () {do_thing_2;});

parallel_for (0, 100, [&] (int i) {Do_something});

lambda expression

(must be function calls)

You can also use cilk or openmp to

compile your code

https://github.com/cmuparlay/pbbslib

Cost model
work and span

17

Cost model: work-span

18

• For all computations, draw a DAG
• A->B means that B can be performed

only when A has been finished

• It shows the dependency of operations
in the algorithm

• Work: the total number of
operations

• Span (depth): the longest length
of chain

Work = 17

span = 8

Cost model: work-depth
• Work: The total number of

operations in the algorithm
• Sequential running time when the

algorithm runs on one processor

• Work-efficiency: the work is
(asymptotically) no more than the
best (optimal) sequential algorithm

• Goal: make the parallel algorithm
efficient when a small number of
processor are available

19

𝑇1

Cost model: work-depth

• Span (depth): The longest
dependency chain

• Total time required if there are infinite
number of processors

• Make it polylog(n) or 𝑂(𝑛𝜖)

• Goal: make the parallel algorithm
faster and faster when more and
more processors are available -
scalability

20

𝑇∞

How do work and span relate to
the real execution and running

time?

21

Schedule a parallel algorithm with work 𝑊 and span 𝑆

• 𝒑: number of processors

• Asymptotically, it is also the lower bound

• 𝑾/𝒑 term: even though all processors are perfectly-balanced
full-loaded, we need this amount of time

• 𝑺 term: even though we have an infinite number of processors,
we need this amount of time

• More details will be given in later lectures
22

𝑶
𝑾

𝒑
+ 𝑺Can be scheduled in time

(w.h.p. for some randomized schedulers)

Parallelism / speedup

• 𝑻𝟏: running time on one thread, work

• 𝑻∞: running time on unlimited number of processors, span

• Parallelism =
𝑻𝟏

𝑻∞

• Speedup:
• Sequential running time / parallel running time

• Self-speedup: parallel code running on one processor / parallel code running
on 𝑝 processors

23

Warm-up: reduce
Compute the sum of values in an

array

24

Warm-up

• Compute the sum (reduce) of all values in an array

25

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Work: 𝑂(𝑛)
Span: 𝑂(log 𝑛)

Implementing parallel reduce in cilk

26

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Pseudocode Code using Cilk

It is still valid is running sequentially,

i.e., by one processor

Implementing parallel reduce in PBBS

27

#include “pbbslib/utilities.h”

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[0]; else {
int L, R;
par_do([&] () {reduce(A, n/2, L);},

[&] () {reduce(A+n/2, n-n/2, R);});
ret = L+R;

}
}

parallel_for (0, 100, [&] (int i) {A[i] = i;});

lambda expression

(must be function calls)

You can also use cilk or openmp to

compile your code

Testing parallel reduce

28

Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Self-speedup:

13.29

Code was running on course server

Testing parallel reduce

29

Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Speedup:

??

Code was running on course server

Implementation trick 1:
coarsening

30

Coarsening

• Forking and joining are costly – this is the overhead of using
parallelism

• If each task is too small, the overhead will be significant

• Solution: let each parallel task get enough work to do!

31

int reduce(int* A, int n) {
if (n < threshold) {

int ans = 0;
for (int i = 0; i < n; i++)

ans += A[i];
return ans; }

int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Testing parallel reduce with coarsening

32

Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

Best threshold depends on the machine parameters and the problem

Testing parallel reduce with coarsening

33

Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

In the best case using 24 threads improves the performance by about 3 times.

- The reduce algorithm is I/O bounded (will be discussed in the course later)

- # threads is small

- Can expect better speedup in algorithms like matrix multiplication

Divide-and-conquer + coarsening

• Coarsening means that we don’t want each subtask running in
parallel to be too small

• Is there an alternative way to make it simpler?

34

An easier & practical solution

35

Sum[0] Sum[1] Sum[2] Sum[3] Sum[4] Sum[5]

1. Divide the array into 𝑡 blocks

2. In parallel, compute the sum of each block. Within each

block the sum is computed sequentially.

3. Add all sums for all blocks together, sequentially

How many blocks should we use?

Threshold

How many blocks should we use?

• 𝒑 as the number of available processors of the machine?
• May not be a good idea – load balancing

• If any of these processors is unavailable, an extra round is needed

• If any of them is blocked or is slow – the slowest one is the bottleneck

• Usually we can use 𝒄𝒑 blocks, for some constant 𝒄
• E.g., for 𝑐 ≈ 10~100

• Or using 𝑐 = 𝑛

• Having more tasks allows for more flexibility in scheduling

• State-of-the-art schedulers can do a good job

36

Testing parallel reduce with coarsening

37

Algorithm #blocks Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.26s

Parallel code on 24 threads 1000 0.19s

Parallel code on 24 threads 100000 0.19s

Parallel code on 24 threads 10000000 0.21s

Input of 𝟏𝟎𝟗 elements

For more complicated algorithms, the best #blocks can be different

Prefix Sum (Scan)

38

Prefix sum

A = 1 2 3 4 5 6 7 8

B = 1 3 6 10 15 21 28 36

The most widely-used building block in

parallel algorithm design

Prefix sum algorithms

• We can design algorithms to make it work-efficient with
𝑶(𝐥𝐨𝐠𝒏) depth

• But again we need coarsening to avoid small parallel tasks

• Can we also use the blocking idea?

40

A parallel scan algorithm

• Divide the array into 𝒕 blocks, each with size about 𝒃

• Compute the sum of each block in an array 𝑩, in parallel
(sequential within each block)

• Compute the prefix sum of 𝑩 sequentially, and write the prefix
sum of B to the 𝒃-th, 𝟐𝒃-th, … slots in the output

• Fill in the rest of each block in parallel – run a sequential
prefix sum for each block, with an offset decided by the prefix
sum at the end of the previous block

41

1 2 3 4 5 6 7 8 9 10 11 12

10 26 42

6 21 45 781 3 10 15 28 36 55 66

Abstract reduce and scan

• For both reduce and scan, the binary operation can be any
associative operations

• Not necessary to be addition on integers
• Real numbers, Boolean values, …

• Multiply, bit operation (and, or, xor, …), …

• For a sequence of matrices, define the operation as matrix multiplication
• Compute the product of multiple matrices

• For a sequence of sets, define the operation as union/intersection

42

Summary

• Scheduler:
• Help you map your parallel tasks to processors

• Fork-join
• Fork: create several tasks that will be run in parallel

• Join: after all forked threads finish, synchronize them

• Work-span
• Work: total number of operations, sequential complexity

• Span (depth): the longest chain in the dependence graph

• Writing code in parallel
• Parallel_do: execute two tasks in parallel

• Parallel_for: execute a for-loop in parallel

• Cilk and PBBS based on C++
43

Summary

• Reduce/scan algorithms
• Divide-and-conquer or blocking

• Coarsening
• Avoid overhead of fork-join

• Let each subtask large enough

44

