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Algorithmic engineering 
– make your code faster
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Ways to Make Code Faster

• Cannot rely on the 
improvement of hardware 
anymore

• Use multicores!
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Shared-memory 

Multi-core 

Parallelism

Ways to Make Code Faster: Parallelism
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Shared-memory 

Multi-core 

Parallelism

Multiple processors collaborate to get a task done

(And avoid any contention between them)



(Pictures from 9gag.com)

Theory Practice
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Multi-core Programming: Theory and Practice

Memory leaking!

Memory leaking: memory which is no longer 

needed is not released



(Pictures from 9gag.com)

Theory Practice
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Multi-core Programming: Theory and Practice

Memory leaking!

Deadlock!

Deadlock: a state in which each member of 

a group is waiting for another member, 

including itself, to take action, such as 

releasing a lock



(Pictures from 9gag.com)

Theory Practice
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Multi-core Programming: Theory and Practice

Memory leaking!

Data Race

Deadlock!

Data Race: Two or more processors are 

accessing the same memory location, and 

at least one of them is writing



(Pictures from 9gag.com)

Theory Practice
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Multi-core Programming: Theory and Practice

Memory leaking!

Data Race

Missing the 10th dog! Did it become a zombie???

Deadlock!

Zombie process: a process that has 

completed execution but still has an entry 

in the process table



Parallel programming
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• Not let this to happen →

• Write code that is
• High performance

• Easy to debug



Make parallelism simple – some basic concepts

• Shared memory
• All processors share the memory

• They may or may not share caches – will be covered later

• Design parallel algorithms without knowing the number of 
processors available

• It’s generally hard to know # available processors

• Scheduler: bridge your algorithm and the OS
• Your algorithm specifies the logical dependency of parallel tasks

• The scheduler maps them to processors
• Usually also dynamic
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How can we write parallel programs?
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What your program tells the scheduler

• Fork-join model
• At any time, your program can fork a 

number of tasks and let some parallel 
threads execute them

• After they all return, they are 
synchronized by a join operation

• Fork-join can be nested

• Most commonly used primitives
• Execute two tasks in parallel (parallel_do)

• Parallel for-loop: execute 𝑛 tasks in 
parallel (parallel_for)
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Fork-join parallelism

• Supported by many 
programming languages

• Cilk/cilk+ (silk – thread)
• Based on C++

• Execute two tasks in parallel
• do_thing_1 can be done in parallel in 

another thread

• do_thing_2 will be done by the current 
thread

• Parallel for-loop: execute 𝑛 tasks in 
parallel

• For cilk, it first forks two tasks, then four, 
then eight, … in O(log n) rounds
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cilk_spawn do_thing_1;
do_thing_2;
cilk_sync;

cilk_for (int i = 0; i < n; i++) {
do_something;

}

#include <cilk/cilk.h>
#include <cilk/cilk_api.h>

Fork

Join

As long as you can design a parallel algorithm in fork-join, 

implementing them requires very little work on top of your 

sequential C++ code



Cilk

• The name comes from silk because “silk and thread”

• A quick brain teaser: what is the difference/common things 
between string and thread?

• If you don’t know what am asking / find they have nothing in common, you 
must be a programmer

• They are both thin, long cords
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Fork-join parallelism

• A lightweighted library: PBBS (Problem-based benchmark suite)

• Code available at: https://github.com/cmuparlay/pbbslib
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#include “pbbslib/utilities.h”

par_do([&] () {do_thing_1;}, 
[&] () {do_thing_2;});

parallel_for (0, 100, [&] (int i) {Do_something}); 

lambda expression 

(must be function calls)

You can also use cilk or openmp to 

compile your code

https://github.com/cmuparlay/pbbslib


Cost model
work and span
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Cost model: work-span
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• For all computations, draw a DAG
• A->B means that B can be performed

only when A has been finished

• It shows the dependency of operations 
in the algorithm 

• Work: the total number of 
operations

• Span (depth): the longest length 
of chain

Work = 17

span = 8



Cost model: work-depth
• Work: The total number of 

operations in the algorithm
• Sequential running time when the 

algorithm runs on one processor

• Work-efficiency: the work is 
(asymptotically) no more than the 
best (optimal) sequential algorithm

• Goal: make the parallel algorithm 
efficient when a small number of 
processor are available
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𝑇1



Cost model: work-depth

• Span (depth): The longest 
dependency chain

• Total time required if there are infinite 
number of processors

• Make it polylog(n) or 𝑂(𝑛𝜖)

• Goal: make the parallel algorithm 
faster and faster when more and 
more processors are available -
scalability
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𝑇∞



How do work and span relate to 
the real execution and running 

time?
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Schedule a parallel algorithm with work 𝑊 and span 𝑆

• 𝒑: number of processors

• Asymptotically, it is also the lower bound

• 𝑾/𝒑 term: even though all processors are perfectly-balanced 
full-loaded, we need this amount of time

• 𝑺 term: even though we have an infinite number of processors, 
we need this amount of time

• More details will be given in later lectures
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𝑶
𝑾

𝒑
+ 𝑺Can be scheduled in time

(w.h.p. for some randomized schedulers)



Parallelism / speedup

• 𝑻𝟏: running time on one thread, work

• 𝑻∞: running time on unlimited number of processors, span

• Parallelism = 
𝑻𝟏

𝑻∞

• Speedup:
• Sequential running time / parallel running time

• Self-speedup: parallel code running on one processor / parallel code running 
on 𝑝 processors
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Warm-up: reduce
Compute the sum of values in an 

array
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Warm-up

• Compute the sum (reduce) of all values in an array 
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1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Work: 𝑂(𝑛)
Span: 𝑂(log 𝑛)



Implementing parallel reduce in cilk
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int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Pseudocode Code using Cilk

It is still valid is running sequentially, 

i.e., by one processor



Implementing parallel reduce in PBBS
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#include “pbbslib/utilities.h”

void reduce(int* A, int n, int& ret) {
if (n == 1) ret = A[0]; else {
int L, R;
par_do([&] () {reduce(A, n/2, L);}, 

[&] () {reduce(A+n/2, n-n/2, R);});
ret = L+R;

}
}

parallel_for (0, 100, [&] (int i) {A[i] = i;}); 

lambda expression 

(must be function calls)

You can also use cilk or openmp to 

compile your code



Testing parallel reduce
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Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Self-speedup:

13.29

Code was running on course server



Testing parallel reduce
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Sequential running time 0.61s

Parallel code on 24 threads* 4.51s

Parallel code on 4 threads 17.14s

Parallel code on 1 thread 59.95s

Input of 𝟏𝟎𝟗 elements

*: 12 cores with 24 hyperthreads

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Speedup:

??

Code was running on course server



Implementation trick 1:
coarsening
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Coarsening

• Forking and joining are costly – this is the overhead of using 
parallelism

• If each task is too small, the overhead will be significant

• Solution: let each parallel task get enough work to do!
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int reduce(int* A, int n) {
if (n < threshold) {

int ans = 0;
for (int i = 0; i < n; i++) 

ans += A[i];
return ans; }

int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }



Testing parallel reduce with coarsening
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Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

Best threshold depends on the machine parameters and the problem



Testing parallel reduce with coarsening
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Algorithm Threshold Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.27s

Parallel code on 24 threads 10000 0.19s

Parallel code on 24 threads 1000000 0.19s

Parallel code on 24 threads 10000000 0.22s

Input of 𝟏𝟎𝟗 elements

In the best case using 24 threads improves the performance by about 3 times.

- The reduce algorithm is I/O bounded (will be discussed in the course later)

- # threads is small

- Can expect better speedup in algorithms like matrix multiplication



Divide-and-conquer + coarsening

• Coarsening means that we don’t want each subtask running in 
parallel to be too small

• Is there an alternative way to make it simpler?
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An easier & practical solution
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Sum[0] Sum[1] Sum[2] Sum[3] Sum[4] Sum[5]

1. Divide the array into 𝑡 blocks

2. In parallel, compute the sum of each block. Within each 

block the sum is computed sequentially.

3. Add all sums for all blocks together, sequentially

How many blocks should we use?

Threshold



How many blocks should we use?

• 𝒑 as the number of available processors of the machine?
• May not be a good idea – load balancing

• If any of these processors is unavailable, an extra round is needed

• If any of them is blocked or is slow – the slowest one is the bottleneck

• Usually we can use 𝒄𝒑 blocks, for some constant 𝒄
• E.g., for 𝑐 ≈ 10~100

• Or using 𝑐 = 𝑛

• Having more tasks allows for more flexibility in scheduling

• State-of-the-art schedulers can do a good job

36



Testing parallel reduce with coarsening
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Algorithm #blocks Time

Sequential running time - 0.61s

Parallel code on 24 threads 100 0.26s

Parallel code on 24 threads 1000 0.19s

Parallel code on 24 threads 100000 0.19s

Parallel code on 24 threads 10000000 0.21s

Input of 𝟏𝟎𝟗 elements

For more complicated algorithms, the best #blocks can be different



Prefix Sum (Scan)
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Prefix sum

A =     1     2     3     4     5     6     7     8

B =     1     3     6    10   15   21   28   36

The most widely-used building block in 

parallel algorithm design



Prefix sum algorithms

• We can design algorithms to make it work-efficient with 
𝑶(𝐥𝐨𝐠𝒏) depth

• But again we need coarsening to avoid small parallel tasks

• Can we also use the blocking idea?
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A parallel scan algorithm

• Divide the array into 𝒕 blocks, each with size about 𝒃

• Compute the sum of each block in an array 𝑩, in parallel 
(sequential within each block)

• Compute the prefix sum of 𝑩 sequentially, and write the prefix 
sum of B to the 𝒃-th, 𝟐𝒃-th, … slots in the output

• Fill in the rest of each block in parallel – run a sequential 
prefix sum for each block, with an offset decided by the prefix 
sum at the end of the previous block
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1 2 3 4 5 6 7 8 9 10 11 12

10 26 42

6 21 45 781 3 10 15 28 36 55 66



Abstract reduce and scan

• For both reduce and scan, the binary operation can be any 
associative operations

• Not necessary to be addition on integers
• Real numbers, Boolean values, …

• Multiply, bit operation (and, or, xor, …), …

• For a sequence of matrices, define the operation as matrix multiplication
• Compute the product of multiple matrices

• For a sequence of sets, define the operation as union/intersection
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Summary

• Scheduler:
• Help you map your parallel tasks to processors

• Fork-join
• Fork: create several tasks that will be run in parallel

• Join: after all forked threads finish, synchronize them

• Work-span
• Work: total number of operations, sequential complexity

• Span (depth): the longest chain in the dependence graph

• Writing code in parallel
• Parallel_do: execute two tasks in parallel

• Parallel_for: execute a for-loop in parallel

• Cilk and PBBS based on C++
43



Summary

• Reduce/scan algorithms
• Divide-and-conquer or blocking

• Coarsening
• Avoid overhead of fork-join

• Let each subtask large enough
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