CS260 - Lecture 6 Yan Gu

Algorithm Engineering (aka. How to Write Fast Code)

I/O Algorithms and Parallel Samplesort CS260: Algorithm Engineering Lecture 6

The I/O Model

Sampling in Algorithm Design

Parallel Samplesort

64 B cache blocks

Last week - The I/O model

- The I/O model has two special *memory transfer* instructions:
 - Read transfer: load a block from slow memory
 - Write transfer: write a block to slow memory
- The complexity of an algorithm on the I/O model (I/O complexity) is measured by:

#(read transfers) + #(write transfers)

Cache-Oblivious Algorithms

- Algorithms not parameterized by *B* or *M*
 - These algorithms are unaware of the parameters of the memory hierarchy
- Analyze in the *ideal cache* model same as the I/O model except optimal replacement is assumed

CS260: Algorithm Engineering Lecture 6

The I/O Model

Sampling in Algorithm Design

Parallel Samplesort

Why Sampling?

- Yan has an array $\{a_0, a_1, \dots, a_{n-1}\}$ such that $a_i = 0$ or 1, and Yan wants to know how many 0(s) in the array
- Scan, linear work, can be parallelized
 - Sounds like a good idea?

Why Sampling?

• Yan has an array $\{a_0, a_1, \dots, a_{n-1}\}$ and a function $f(\cdot)$ such that $f(a_i) = 0$ or 1, and Yan wants to know how many $f(a_i) = 0$

Why Sampling?

- Yan has an array $\{a_0, a_1, \dots, a_{n-1}\}$ and n function $f_1(\cdot), \dots, f_n(\cdot)$ such that $f_j(a_i) = 0$ or 1, and Yan wants to know how many $f_j(a_i) = 0$
- Takes quadratic work, does not work for reasonable input size

• Examples:

- Find the median *m* of a_i , $f_m(a_i) = "a_i < m"$, check if $\#(f_{a_i}(a_i) = 0)$ is n/2
- Find a good pivot p in quicksort (e.g., $\frac{n}{4} \le \#(f_p(a_i) = 0) \le \frac{3n}{4})$
- Guarantee all sorts of properties in graph, geometry and other algorithms

- Yan has an array $\{a_0, a_1, \dots, a_{n-1}\}$ and n function $f(\cdot)$ such that $f(a_i) = 0$ or 1, and Yan wants to know how many $f(a_i) = 0$
- Uniformly randomly pick k elements, compute the $f(a_i) = 0$ case (denoted as k_0), and estimate by $\frac{n \cdot k_0}{k}$
 - As long as k is sufficiently large, we are "confident" with our estimation
 - On the other hand, when k is small, the result can be random
- When is the estimation good?
- What is "good"?

- What is "good"?
 - With high probability (informal): happens with probability $1 n^{-c}$ for any constant c > 0
 - This is large when n is reasonably large, like $> 10^6$

When is the estimation good?

- Claim: when k_0 is $\Omega(\log n)$
- How can reality off from the estimate?

When is the estimation good?

- Claim: when k_0 is $\Omega(\log n)$
- How can reality off from the estimate?
- Assume there are z elements with $f(a_i) = 0$, and we have k samples with k_0 hits. The expected #hits $E[k_0] = kz/n$.
- The probability that this is off by 100% (i.e., $k_0 > 2kz/n$) is $e^{-\frac{kz}{3n}}$

Chernoff bound: for *n* independent random variables in {0, 1}, let *X* be the sum, and $\mu = E[X]$, then for any $0 \le \delta \le 1$, $Pr(X \ge (1 + \delta)\mu) \le e^{-\frac{\delta^2 \mu}{3}}$

When is the estimation good?

- Claim: when k_0 is $\Omega(\log n)$
- How can reality off from the estimate?
- Assume there are z elements with $f(a_i) = 0$, and we have k samples with k_0 hits. The expected #hits $E[k_0] = kz/n$.
- The probability that this is off by 100% (i.e., $k_0 > 2kz/n$) is $e^{-\frac{kz}{3n}}$
- Since $k_0 \approx kz/n$, $e^{-\frac{kz}{3n}}$ is n^{-c} when $k_0 = \Omega(\log n)$, because $e^{-\frac{kz}{3n}} \approx e^{-\frac{k_0}{3}} < e^{-c' \log_2 n} = n^{-c}$

When is the estimation good?

- Claim: when k_0 is $\Omega(\log n)$
- How can reality off from the estimate?
- Assume there are z elements with $f(a_i) = 0$, and we have k samples with k_0 hits. The expected #hits $E[k_0] = kz/n$.
- The probability that this is off by 1% (i.e., $k_0 > 1.01kz/n$) is $e^{-\frac{\delta^2 kz}{3n}}$

• Since
$$k_0 \approx kz/n$$
, $e^{-\frac{\delta' kz}{3n}}$ is n^{-c} when $k_0 = \Omega(\log n)$, because $e^{-\frac{\delta^2 kz}{3n}} \approx e^{-\frac{k_0}{3 \cdot 100^2}} < e^{-c' \log_2 n} = n^{-c}$

Chernoff bound: for *n* independent random variables in $\{0, 1\}$, let *X* be the sum, and $\mu = E[X]$, then for any $0 < \delta < 1$,

 $\Pr(X \ge (1 + \delta)\mu) \le e^{-\frac{\delta^2 \mu}{3}}$

Rule of Thumbs for Sampling

- Example Applications:
 - Find the median *m* of a_i , $f(a_i) = "a_i < m"$, check if $\#(f_{a_i}(a_i) = 0)$ is n/2
 - Find a good pivot p in quicksort (e.g., $\frac{n}{4} \le \#(f_p(a_i) = 0) \le \frac{3n}{4})$
 - Guarantee all sorts of properties in graph, geometry and other algorithms
- Take some samples! Uniformly randomly pick k elements, compute the $f(a_i) = 0$ case (denoted as k_0), and estimate by $\frac{n \cdot k_0}{k}$
 - 4 sample hits gives you reasonable result
 - 20 sample hits gives you confident
 - 100 sample hits is sufficient!
 - Remember: only hits count

CS260: Algorithm Engineering Lecture 6

The I/O Model

Sampling in Algorithm Design

Parallel Samplesort

Parallel and I/O-efficient Sorting Algorithms

- Classic sorting algorithms are easy to be parallelized
 - Quicksort: find a "good" pivot, apply partition (filter) to find elements that are smaller and that are larger, and recurse
 - Mergesort: apply parallel merge for $\log_2 n$ rounds
 - But not I/O efficient since we need $\log_2 n$ rounds of global data movement
 - We now introduce samplesort, which is both highly in parallel and I/O efficient

Analogous to multiway quicksort

1. Split input array into \sqrt{N} contiguous subarrays of size \sqrt{N} . Sort subarrays recursively

Analogous to multiway quicksort

1. Split input array into \sqrt{N} contiguous subarrays of size \sqrt{N} . Sort subarrays recursively (sequentially)

4. Recursively sort the buckets

$$\leq p_1 \leq \square \leq p_2 \leq \dots \leq p_{\sqrt{N}-1} \leq \square$$
Bucket 2 Bucket 2 Bucket \sqrt{N}

5. Copy concatenated buckets back to input array

sorted

Choosing good pivots based on sampling

2. Choose $\sqrt{N} - 1$ "good" pivots $p_1 \le p_2 \le \dots \le p_{\sqrt{N}-1}$

Can be achieved by randomly pick $c\sqrt{N} \log N$ random samples, sort them and pick the every $(c \log N)$ -th element

This step is fast

Sequential local sorts (e.g., call stl::sort)

1. Split input array into \sqrt{N} contiguous *subarrays* of size \sqrt{N} . Sort subarrays recursively (sequentially)

4. Recursively sort the buckets (sequential)

Key Part: the Distribution Phase

Key Part: the Distribution Phase

- For simplicity, assume n = 16, and the input is [1, 2, 3, 4, 1, 1, 3, 3, 1, 2, 2, 4, 1, 2, 4, 4]
- First, get the count for each subarray in each bucket [1, 1, 1, 1, 1, 2, 0, 2, 0, 1, 2, 0, 1, 1, 1, 0, 2]
- Then, transpose the array and scan to compute the offsets
 [1, 2, 1, 1, 1, 0, 2, 1, 1, 2, 0, 0, 1, 0, 1, 2]
 [0, 1, 3, 4, 5, 6, 6, 8, 9, 10, 12, 12, 12, 12, 13, 13, 14]
- Lastly, move each element to the corresponding bucket [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4]

Additional Details Left for You

- How to decide the count of each bucket in each subarray
 - Hint: use a (sequential) merge algorithm
- How to transpose the array for counts and write the elements to buckets I/O efficiently
 - Hint: use divide-and-conquer
- Find the best #pivots and #subarrays
 - How does #pivots and #subarrays affect performance?

Samplesort is I/O-efficient

- Only need two rounds of global data accesses
 - For input size *n* between 10 million and 100 billion
- In the midterm project, you can choose to implement this algorithm and engineer the performance
 - This is harder than matrix multiplication, but easier than semisort
 - Expected score is 100%
- Discussion: what is the work for samplesort? And what about depth?

Next lecture: Semisort

- <u>https://www.cs.ucr.edu/~ygu/teaching/algeng/algeng.html</u>
- <u>https://ilearn.ucr.edu/webapps/blackboard/execute/announc</u> <u>ement?method=search&context=course&course_id=_307782_</u>