Algorithm Engineering
(aka. How to Write Fast Code)

CS260 - Lecture 6
Yan Gu

/0 Algorithms and
Parallel Samplesort

CS260: The 1/0 Model

Engner
Engineering Sampling In Algorithm Design
Lecture 6 Parallel Samplesort

DRAM| DRAM| DRAM l

Memory Net-
Controller work T
553
LLC (L3) :
Level Size | Assoc. | Latency
L2 L2 L2 (ns)
Main 128 GB 50
L u||u||L c.. (Lpé LLC 30MB 29 6
data |inst| |data | inst datal | inst
L2 256 KB 8 4
L1-d 32KB 8 2
L1-i 32KB 8 2

64 B cache blocks

Last week - The |/0 model

* The 1/0 model has two special memory transfer instructions:
« Read transfer: load a block from slow memory
« Write transfer: write a block to slow memory

« The complexity of an algorithm on the I/0 model (I/O complexity) is
measured by:

#(read transfers) + #(write transfers)

Fast Memory Slow Memory

1
= =
M/B < = =
| | 1

Cache-0blivious Algorithms

 Algorithms not parameterized by B or M

« These algorithms are unaware of the parameters of the memory
hierarchy

« Analyze in the jideal cache model — same as the I/O model
except optimal replacement is assumed

Fast Memory Slow Memory

1
M/B - = |-1>

CS260: The 1/0 Model

Engner
Engineering Sampling In Algorithm Design
Lecture 6 Parallel Samplesort

Why Sampling?

* Yan has an array {ay, a4, ...,a,_1} such that a; = 0 or 1, and
Yan wants to know how many 0(s) in the array

« Scan, linear work, can be parallelized
e Sounds like a good idea?

Why Sampling?

* Yan has an array {ay, a4, ...,a,_1} and a function f(-) such that
f(a;) =0or 1, and Yan wants to know how many f(a;) =0

Why Sampling?

e Yan has an array {agy, a4, ..., a,_1} and n function f1(-), ..., f(*)
such that f;(a;) = 0 or 1, and Yan wants to know how many

fi(a;) =0
« Takes quadratic work, does not work for reasonable input size

« Examples:
* Find the median m of a;, f(a;) = "a; <m", check if #(fz,(a;) = 0) isn/2
* Find a good pivot p in quicksort (e.g., % < #(fp(a)) =0) < %n)
« Guarantee all sorts of properties in graph, geometry and other algorithms

Approximate Solution: Sampling

* Yan has an array {agy, a4, ..., a,_1} and n function f(:) such that
f(a;) =0or 1, and Yan wants to know how many f(a;) =0

« Uniformly randomly pick k elements, compute the f(a;) =0
-k
case (denoted as kg), and estimate by %

» As long as k is sufficiently large, we are “confident” with our estimation
* On the other hand, when k is small, the result can be random

* When is the estimation good?
 What is “good”?

Approximate Solution: Sampling

 What is “good”?
« With high probability (informal): happens with probability 1 — n™¢ for any
constantc > 0
* This is large when n is reasonably large, like > 10°

 When Is the estimation good?
« Claim: when k; is Q(logn)
* How can reality off from the estimate?

Approximate Solution: Sampling

* When is the estimation good?
e Claim: when k; is Q(logn)
* How can reality off from the estimate?

« Assume there are z elements with f(a;) = 0, and we have k samples with
ko hits. The expected #hits E|k,] = kz/n.
kz

* The probability that this is off by 100% (i.e., ko > 2kz/n)is e 3n

Chernoff bound: for n independent random variables in {0, 1},

let X be the sum, and u = E[X], thenforany 0 <6 <1,
5%u

PriX=(14+6u) <e 3

Approximate Solution: Sampling

* When is the estimation good?
e Claim: when k; is Q(logn)
* How can reality off from the estimate?

« Assume there are z elements with f(a;) = 0, and we have k samples with
ko hits. The expected #hits E[k,] = kz/n.
kz

* The probability that this is off by 100% (i.e., ko > 2kz/n)is e 3n
kz
. Sir)cce ko ~ kz/n, e 3nisn~¢ when k, = Q(logn), because
Z 0

!/
e~ e 3 <e ¢ 108N =p¢

Approximate Solution: Sampling

* When is the estimation good?
e Claim: when k; is Q(logn)
* How can reality off from the estimate?

« Assume there are z elements with f(a;) = 0, and we have k samples with
ko hits. The expected #hits E[k,] = kz/n.

5%kz
* The probabillity that this is off by 1% (i.e., kg > 1.01kz/n)iSe 3n
52kz
* Since ky = kz/n,e 3n isn~ ¢ when ky, = Q(logn), because

_8%kz ko
e 3n ~ e 31002 < e

Chernoff bound: for n independent random variables in {0, 1}, let X be
the sum, and u = E[X], thenforany 0 < § < 1,
5%u
PriX=(1+d0)u) <e 3

—c’ log,n c

= Nn

Rule of Thumbs for Sampling

 Example Applications:
* Find the median m of aq;, f(a;) = "a; < m", check if #(faj(al-) =0)isn/2

* Find a good pivot p in quicksort (e.g., g < #(fp(a)) =0) < %)
« Guarantee all sorts of properties in graph, geometry and other algorithms

« Take some samples! Uniformly randomly pick k elements,
n-k
compute the f(a;) = 0 case (denoted as k), and estimate by TO

* 4 sample hits gives you reasonable result
« 20 sample hits gives you confident

« 100 sample hits is sufficient!

« Remember: only hits count

CS260: The 1/0 Model

Engner
Engineering Sampling In Algorithm Design
Lecture 6 Parallel Samplesort

Parallel and I/0-efficient Sorting Algorithms
 Classic sorting algorithms are easy to be parallelized

* Quicksort: find a “good” pivot, apply partition (filter) to find
elements that are smaller and that are larger, and recurse

« Mergesort: apply parallel merge for log, n rounds

« But not |I/0O efficient since we need log, n rounds of global data
movement

« We now introduce samplesort, which is both highly in parallel and
/0 efficient

Sample-sort outline

Analogous to multiway quicksort

1. Split input array into VN contiguous

subarrays of size VN. Sort subarrays
recursively

\ J
Y

VN sorted

\

= <

Sample-sort outline

Analogous to multiway quicksort VN sorted

A
4 A

1. Split input array into VN contiguous
subarrays of size vVN. Sort subarrays

recursively (sequentially) B
]

Sample-sort outline

2. Choose VN — 1 “good” pivots VN, sorted
P1=SP2=" SPyN-1 .

3. Distribute subarrays into
buckets, according to
pivots

Size = VN

Bucket 1 Bucket 2 Bucket VN

Sample-sort outline

4. Recursively sort the buckets

(<< [Wps-cr. <00

Bucket 1 Bucket 2 Bucket VN

5. Copy concatenated buckets back to input array

Choosing good pivots based on sampling

2.Choose VN — 1 “good” pivots p, < p, < - <
PN-1

Can be achieved by randomly pick cvNlog N random
samples, sort them and pick the every (clog N)-th
element

This step is fast

Sequential local sorts (e.g., call stl::sort)

1. Split input array into vN contiguous subarrays of size
VN. Sort subarrays recursively (sequentially)

\ J
Y

VN sorted

4. Recursively sort the buckets (sequential)

|:.SP1SElSPzS"'SPW—1S| |

Bucket 1 Bucket 2 Bucket VN

Key Part: the Distribution Phase

3. Distribute subarrays into VN, sortec
buckets, according to pivots .

Size = VN

Bucket 1 Bucket 2 Bucket VN

Key Part: the Distribution Phase

 For simplicity, assume n = 16, and the input is
11,2, 3,4, 1,1,3,3, 1,2,2,4, 1,2,4,4]

* First, get the count for each subarray in each bucket
11,1,1,1, 2,020, 1,2,0,1, 1,1,0,2]

* Then, transpose the array and scan to compute the offsets
11,2,1,1, 1,0,2,1, 1,2,0,0, 1,0,1,2]
10,1, 3,4, 5,6,6,8, 9,10,12,12, 12,13,13,14]

 Lastly, move each element to the corresponding bucket
(1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4]

25

Additional Details Left for You

* How to decide the count of each bucket in each subarray
« Hint: use a (sequential) merge algorithm

« How to transpose the array for counts and write the elements
to buckets 1/0 efficiently

« Hint: use divide-and-conquer

* Find the best #pivots and #subarrays
« How does #pivots and #subarrays affect performance?

26

Samplesort is |/0-efficient

« Only need two rounds of global data accesses
* For input size n between 10 million and 100 billion

 In the midterm project, you can choose to implement this
algorithm and engineer the performance
« This is harder than matrix multiplication, but easier than semisort
« Expected score is 100%

* Discussion: what is the work for samplesort? And what about
depth?

21

Next lecture: Semisort

* https://www.cs.ucr.edu/~ygu/teaching/algeng/algeng.html

« https://ilearn.ucr.edu/webapps/blackboard/execute/announc
ement?method=search&context=course&course_id=_307782_

1

28

https://www.cs.ucr.edu/~ygu/teaching/algeng/algeng.html
https://ilearn.ucr.edu/webapps/blackboard/execute/announcement?method=search&context=course&course_id=_307782_1

