
Algorithm Engineering
(aka. How to Write Fast Code)

I/O Algorithms and
Parallel Samplesort

CS260 – Lecture 6

Yan Gu

CS260:
Algorithm
Engineering
Lecture 6

2

The I/O Model

Sampling in Algorithm Design

Parallel Samplesort

3

• The I/O model has two special memory transfer instructions:

• Read transfer: load a block from slow memory

• Write transfer: write a block to slow memory

• The complexity of an algorithm on the I/O model (I/O complexity) is
measured by:

#(read transfers) + #(write transfers)

Last week - The I/O model

CPU

Fast Memory Slow Memory

0 1

1
𝑀/𝐵

𝐵

Cache-Oblivious Algorithms
• Algorithms not parameterized by 𝐵 or 𝑀

• These algorithms are unaware of the parameters of the memory
hierarchy

• Analyze in the ideal cache model — same as the I/O model
except optimal replacement is assumed

CPU

Fast Memory

0 1

1
𝑀/𝐵

𝐵

Slow Memory

CS260:
Algorithm
Engineering
Lecture 6

6

The I/O Model

Sampling in Algorithm Design

Parallel Samplesort

• Yan has an array {𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏−𝟏} such that 𝒂𝒊 = 𝟎 or 𝟏, and
Yan wants to know how many 𝟎(s) in the array

• Scan, linear work, can be parallelized
• Sounds like a good idea?

Why Sampling?

• Yan has an array {𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏−𝟏} and a function 𝒇(⋅) such that
𝒇(𝒂𝒊) = 𝟎 or 𝟏, and Yan wants to know how many 𝒇(𝒂𝒊) = 𝟎

Why Sampling?

• Yan has an array {𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏−𝟏} and 𝒏 function 𝒇𝟏 ⋅ , … , 𝒇𝒏(⋅)
such that 𝒇𝒋(𝒂𝒊) = 𝟎 or 𝟏, and Yan wants to know how many

𝒇𝒋(𝒂𝒊) = 𝟎

• Takes quadratic work, does not work for reasonable input size

• Examples:
• Find the median 𝑚 of 𝑎𝑖, 𝑓𝑚 𝑎𝑖 = "𝑎𝑖 < 𝑚", check if #(𝑓𝑎𝑗 𝑎𝑖 = 0) is 𝑛/2

• Find a good pivot 𝑝 in quicksort (e.g.,
𝑛

4
≤ #(𝑓𝑝 𝑎𝑖 = 0) ≤

3𝑛

4
)

• Guarantee all sorts of properties in graph, geometry and other algorithms

Why Sampling?

• Yan has an array {𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏−𝟏} and 𝒏 function 𝒇 ⋅ such that
𝒇(𝒂𝒊) = 𝟎 or 𝟏, and Yan wants to know how many 𝒇(𝒂𝒊) = 𝟎

• Uniformly randomly pick 𝒌 elements, compute the 𝒇 𝒂𝒊 = 𝟎

case (denoted as 𝒌𝟎), and estimate by
𝒏⋅𝒌𝟎

𝒌
• As long as 𝑘 is sufficiently large, we are “confident” with our estimation

• On the other hand, when 𝑘 is small, the result can be random

• When is the estimation good?

• What is “good”?

Approximate Solution: Sampling

• What is “good”?
• With high probability (informal): happens with probability 1 − 𝑛−𝑐 for any

constant 𝑐 > 0

• This is large when 𝑛 is reasonably large, like > 106

• When is the estimation good?
• Claim: when 𝑘0 is Ω log 𝑛

• How can reality off from the estimate?

Approximate Solution: Sampling

• When is the estimation good?
• Claim: when 𝑘0 is Ω log 𝑛

• How can reality off from the estimate?

• Assume there are 𝑧 elements with 𝒇(𝒂𝒊) = 𝟎, and we have 𝑘 samples with
𝑘0 hits. The expected #hits E 𝑘0 = 𝑘𝑧/𝑛.

• The probability that this is off by 100% (i.e., 𝑘0 > 2𝑘𝑧/𝑛) is 𝑒−
𝑘𝑧

3𝑛

Approximate Solution: Sampling

Chernoff bound: for 𝑛 independent random variables in {0, 1},
let 𝑋 be the sum, and 𝜇 = E 𝑋 , then for any 0 ≤ 𝛿 ≤ 1,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝛿2𝜇
3

• When is the estimation good?
• Claim: when 𝑘0 is Ω log 𝑛

• How can reality off from the estimate?

• Assume there are 𝑧 elements with 𝒇(𝒂𝒊) = 𝟎, and we have 𝑘 samples with
𝑘0 hits. The expected #hits E 𝑘0 = 𝑘𝑧/𝑛.

• The probability that this is off by 100% (i.e., 𝑘0 > 2𝑘𝑧/𝑛) is 𝑒−
𝑘𝑧

3𝑛

• Since 𝑘0 ≈ 𝑘𝑧/𝑛, 𝑒−
𝑘𝑧

3𝑛 is 𝑛−𝑐 when 𝑘0 = Ω log 𝑛 , because

𝑒−
𝑘𝑧

3𝑛 ≈ 𝑒−
𝑘0
3 < 𝑒−𝑐

′ log2𝑛 = 𝑛−𝑐

Approximate Solution: Sampling

• When is the estimation good?
• Claim: when 𝑘0 is Ω log 𝑛

• How can reality off from the estimate?

• Assume there are 𝑧 elements with 𝒇(𝒂𝒊) = 𝟎, and we have 𝑘 samples with
𝑘0 hits. The expected #hits E 𝑘0 = 𝑘𝑧/𝑛.

• The probability that this is off by 1% (i.e., 𝑘0 > 1.01𝑘𝑧/𝑛) is 𝑒−
𝛿2𝑘𝑧

3𝑛

• Since 𝑘0 ≈ 𝑘𝑧/𝑛, 𝑒−
𝛿2𝑘𝑧

3𝑛 is 𝑛−𝑐 when 𝑘0 = Ω log 𝑛 , because

𝑒−
𝛿2𝑘𝑧

3𝑛 ≈ 𝑒
−

𝑘0
3⋅1002 < 𝑒−𝑐

′ log2𝑛 = 𝑛−𝑐

Approximate Solution: Sampling

Chernoff bound: for 𝑛 independent random variables in {0, 1}, let 𝑋 be

the sum, and 𝜇 = E 𝑋 , then for any 0 < 𝛿 < 1,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝛿2𝜇
3

• Example Applications:
• Find the median 𝑚 of 𝑎𝑖, 𝑓 𝑎𝑖 = "𝑎𝑖 < 𝑚", check if #(𝑓𝑎𝑗 𝑎𝑖 = 0) is 𝑛/2

• Find a good pivot 𝑝 in quicksort (e.g.,
𝑛

4
≤ #(𝑓𝑝 𝑎𝑖 = 0) ≤

3𝑛

4
)

• Guarantee all sorts of properties in graph, geometry and other algorithms

• Take some samples! Uniformly randomly pick 𝒌 elements,

compute the 𝒇 𝒂𝒊 = 𝟎 case (denoted as 𝒌𝟎), and estimate by
𝒏⋅𝒌𝟎

𝒌
• 4 sample hits gives you reasonable result

• 20 sample hits gives you confident

• 100 sample hits is sufficient!

• Remember: only hits count

Rule of Thumbs for Sampling

CS260:
Algorithm
Engineering
Lecture 6

16

The I/O Model

Sampling in Algorithm Design

Parallel Samplesort

Parallel and I/O-efficient Sorting Algorithms

• Classic sorting algorithms are easy to be parallelized

• Quicksort: find a “good” pivot, apply partition (filter) to find
elements that are smaller and that are larger, and recurse

• Mergesort: apply parallel merge for log2 𝑛 rounds

• But not I/O efficient since we need log2 𝑛 rounds of global data
movement

• We now introduce samplesort, which is both highly in parallel and
I/O efficient

Sample-sort outline

Analogous to multiway quicksort

1. Split input array into 𝑁 contiguous
subarrays of size 𝑁. Sort subarrays
recursively

…

𝑁, sorted

𝑁

Sample-sort outline

𝑁, sorted

…

Analogous to multiway quicksort

1. Split input array into 𝑁 contiguous
subarrays of size 𝑁. Sort subarrays
recursively (sequentially)

Sample-sort outline

2. Choose 𝑁 − 1 “good” pivots
𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1

3. Distribute subarrays into
buckets, according to
pivots

𝑁, sorted

…

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

Size ≈ 𝑁

4. Recursively sort the buckets

5. Copy concatenated buckets back to input array

Sample-sort outline

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

sorted

Choosing good pivots based on sampling

2. Choose 𝑁 − 1 “good” pivots 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤
𝑝 𝑁−1

Can be achieved by randomly pick 𝑐 𝑁 log𝑁 random
samples, sort them and pick the every 𝑐 log𝑁 -th
element

This step is fast

Sequential local sorts (e.g., call stl::sort)

1. Split input array into 𝑁 contiguous subarrays of size
𝑁. Sort subarrays recursively (sequentially)

4. Recursively sort the buckets (sequential)

…

𝑁, sorted

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

Key Part: the Distribution Phase

3. Distribute subarrays into

buckets, according to pivots

𝑁, sorted

…

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

Size ≈ 𝑁

Key Part: the Distribution Phase

• For simplicity, assume 𝒏 = 𝟏𝟔, and the input is
[𝟏, 𝟐, 𝟑, 𝟒, 𝟏, 𝟏, 𝟑, 𝟑, 𝟏, 𝟐, 𝟐, 𝟒, 𝟏, 𝟐, 𝟒, 𝟒]

• First, get the count for each subarray in each bucket
[𝟏, 𝟏, 𝟏, 𝟏, 𝟐, 𝟎, 𝟐, 𝟎, 𝟏, 𝟐, 𝟎, 𝟏, 𝟏, 𝟏, 𝟎, 𝟐]

• Then, transpose the array and scan to compute the offsets
[𝟏, 𝟐, 𝟏, 𝟏, 𝟏, 𝟎, 𝟐, 𝟏, 𝟏, 𝟐, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟐]

[𝟎, 𝟏, 𝟑, 𝟒, 𝟓, 𝟔, 𝟔, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟐, 𝟏𝟐, 𝟏𝟐, 𝟏𝟑, 𝟏𝟑, 𝟏𝟒]

• Lastly, move each element to the corresponding bucket
[∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅]

25

[𝟏, ∅, ∅, ∅, ∅, 𝟐, ∅, ∅, ∅, 𝟑, ∅, ∅, 𝟒, ∅, ∅, ∅][𝟏, 𝟏, 𝟏, ∅, ∅, 𝟐, ∅, ∅, ∅, 𝟑, 𝟑, 𝟑, 𝟒, ∅, ∅, ∅][𝟏, 𝟏, 𝟏, 𝟏, 𝟏, 𝟐, 𝟐, 𝟐, 𝟐, 𝟑, 𝟑, 𝟑, 𝟒, 𝟒, 𝟒, 𝟒]

Additional Details Left for You

• How to decide the count of each bucket in each subarray
• Hint: use a (sequential) merge algorithm

• How to transpose the array for counts and write the elements
to buckets I/O efficiently

• Hint: use divide-and-conquer

• Find the best #pivots and #subarrays
• How does #pivots and #subarrays affect performance?

26

Samplesort is I/O-efficient

• Only need two rounds of global data accesses
• For input size 𝑛 between 10 million and 100 billion

• In the midterm project, you can choose to implement this
algorithm and engineer the performance

• This is harder than matrix multiplication, but easier than semisort

• Expected score is 100%

• Discussion: what is the work for samplesort? And what about
depth?

27

Next lecture: Semisort

• https://www.cs.ucr.edu/~ygu/teaching/algeng/algeng.html

• https://ilearn.ucr.edu/webapps/blackboard/execute/announc
ement?method=search&context=course&course_id=_307782_
1

28

https://www.cs.ucr.edu/~ygu/teaching/algeng/algeng.html
https://ilearn.ucr.edu/webapps/blackboard/execute/announcement?method=search&context=course&course_id=_307782_1

