
Algorithm Engineering
(aka. How to Write Fast Code)

An Overview of
Computer Architecture

CS260 – Lecture 9

Yan Gu

Many slides in this lecture are borrowed from the first and second lecture in Stanford CS149 Parallel Computing.

The credit is to Prof. Kayvon Fatahalian, and the instructor appreciates the permission to use them in this course.

Lecture Overview

• In this lecture you will learn a brief history of the evolution of architecture

• Instruction level parallelism (ILP)

• Multiple processing cores

• Vector (superscalar, SIMD) processing

• Multi-threading (hyper-threading)

• Already covered in previous lectures: caching

• What we cover:
• Programming perspective of view

• What we do not cover:
• How they are implemented in the hardware level (CMU 15-742 / Stanford CS149)

http://course.ece.cmu.edu/~ece742/S20/
http://cs149.stanford.edu/fall19/

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Moore’s law: #transistors doubles every 18 months

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Key question for computer architecture research:
How to use the more transistors for better performance?

Until ~15 years ago: two significant reasons for
processor performance improvement

• Increasing CPU clock frequency

• Exploiting instruction-level parallelism (superscalar execution)

6

What is a computer program?

int main(int argc, char** argv) {

int x = 1;

for (int i=0; i<10; i++) {
x = x + x;

}

printf(“%d\n”, x);

return 0;
}

7

_main:

100000f10: pushq %rbp

100000f11: movq %rsp, %rbp

100000f14: subq $32, %rsp

100000f18: movl $0, -4(%rbp)

100000f1f: movl %edi, -8(%rbp)

100000f22: movq %rsi, -16(%rbp)

100000f26: movl $1, -20(%rbp)

100000f2d: movl $0, -24(%rbp)

100000f34: cmpl $10, -24(%rbp)

100000f38: jge 23 <_main+0x45>

100000f3e: movl -20(%rbp), %eax

100000f41: addl -20(%rbp), %eax

100000f44: movl %eax, -20(%rbp)

100000f47: movl -24(%rbp), %eax

100000f4a: addl $1, %eax

100000f4d: movl %eax, -24(%rbp)

100000f50: jmp -33 <_main+0x24>

100000f55: leaq 58(%rip), %rdi

100000f5c: movl -20(%rbp), %esi

100000f5f: movb $0, %al

100000f61: callq 14

100000f66: xorl %esi, %esi

100000f68: movl %eax, -28(%rbp)

100000f6b: movl %esi, %eax

100000f6d: addq $32, %rsp

100000f71: popq %rbp

100000f72: retq

Review: what is a program?

From a processor’s
perspective, a program is a
sequence of instructions.

It runs programs!

Processor executes instruction
referenced by the program counter (PC)
(executing the instruction will modify machine
state: contents of registers, memory, CPU state,
etc.)

Move to next instruction …

Then execute it…

And so on…

_main:

100000f10: pushq %rbp

100000f11: movq %rsp, %rbp

100000f14: subq $32, %rsp

100000f18: movl $0, -4(%rbp)

100000f1f: movl %edi, -8(%rbp)

100000f22: movq %rsi, -16(%rbp)

100000f26: movl $1, -20(%rbp)

100000f2d: movl $0, -24(%rbp)

100000f34: cmpl $10, -24(%rbp)

100000f38: jge 23 <_main+0x45>

100000f3e: movl -20(%rbp), %eax

100000f41: addl -20(%rbp), %eax

100000f44: movl %eax, -20(%rbp)

100000f47: movl -24(%rbp), %eax

100000f4a: addl $1, %eax

100000f4d: movl %eax, -24(%rbp)

100000f50: jmp -33 <_main+0x24>

100000f55: leaq 58(%rip), %rdi

100000f5c: movl -20(%rbp), %esi

100000f5f: movb $0, %al

100000f61: callq 14

100000f66: xorl %esi, %esi

100000f68: movl %eax, -28(%rbp)

100000f6b: movl %esi, %eax

100000f6d: addq $32, %rsp

100000f71: popq %rbp

100000f72: retq

Review: what does a processor do?

PC

Instruction level parallelism (ILP)

mul r1, r0, r0

mul r1, r1, r1

st r1, mem[r2]

...

add r0, r0, r3

add r1, r4, r5

...

...

Independent instructions

Dependent instructions

• Processors did in fact leverage parallel execution to make
programs run faster, it was just invisible to the programmer

• Instruction level parallelism (ILP)

- Idea: Instructions must appear to be

executed in program order. BUT

independent instructions can be executed

simultaneously by a processor without

impacting program correctness

- Superscalar execution: processor

dynamically finds independent instructions

in an instruction sequence and executes

them in parallel

ILP example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z

mul r0, r0, r0
mul r1, r1, r1
mul r2, r2, r2
add r0, r0, r1
add r3, r0, r2

// now r3 stores value of program variable ‘a’

Consider the following program:

This program has five instructions, so it will take five clocks to execute, correct?

Can we do better?

ILP example
a = x*x + y*y + z*z

ILP example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z

1. mul r0, r0, r0
2. mul r1, r1, r1
3. mul r2, r2, r2
4. add r0, r0, r1
5. add r3, r0, r2

// now r3 stores value of program variable ‘a’

Superscalar execution: processor automatically finds independent instructions in

an instruction sequence and executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel

(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must come after instructions 1 and 2

And instruction 5 must come after instructions 3 and 4

A more complex example

a = 2
b = 4

tmp2 = a + b // 6
tmp3 = tmp2 + a // 8
tmp4 = b + b // 8
tmp5 = b * b // 16
tmp6 = tmp2 + tmp4 // 14
tmp7 = tmp5 + tmp6 // 30

if (tmp3 > 7)
print tmp3

else
print tmp7

00
01

02
03
04
05
06
07

08
09

10

PC Instruction

Instruction dependency graph
Program (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

What does it mean for a superscalar processor to “respect program order”?

value during

execution

Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions

per clock (Little performance benefit from building a processor that can issue more)

Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991)

S
p

e
e
d

u
p

Until ~15 years ago: two significant reasons for
processor performance improvement

• Increasing CPU clock frequency

• Exploiting instruction-level parallelism (superscalar execution)

16

Part 1: Parallel Execution

Example program

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Compute sin(x) using Taylor expansion:

sin(x) = x - x3/3! + x5/5! - x7/7! + ...

for each element of an array of 𝒏
floating-point numbers

Compile program

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

Execute program

Fetch/

Decode

Execution

Context

Execution Unit

(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

My very simple processor: executes one instruction per clock

Execute program

PC

Fetch/

Decode

Execution

Context

Execution Unit

(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

My very simple processor: executes one instruction per clock

Execute program

PC

Fetch/

Decode

Execution

Context

Execution Unit

(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

My very simple processor: executes one instruction per clock

Execute program
My very simple processor: executes one instruction per clock

PC

Fetch/

Decode

Execution

Context

Execution Unit

(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

Fetch/

Decode

Execution

Context

Superscalar processor

Fetch/

Decode

1

Exec

1

Recall from the previous: instruction level parallelism (ILP)

Decode and execute two instructions per clock (if possible)

Fetch/

Decode

2

Exec

2

Note: No ILP exists in this region of the program

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

result[i]

Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

Processor: pre multi-core era

Fetch/

Decode

Execution

Context

Exec Unit

(ALU)

Data cache

(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip

transistors used to

perform operations

that help a single

instruction stream

run fast

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.

(Also: more transistors → smaller transistors → higher clock frequencies)

Processor: multi-core era (since 2005)

Idea #1:

Use increasing transistor count to add more

cores to the processor

Rather than use transistors to increase

sophistication of processor logic that

accelerates a single instruction stream

(e.g., out-of-order and speculative operations)

Fetch/

Decode

Execution

Context

Execution Unit

(ALU)

Two cores: compute two elements in parallel

Fetch/

Decode

Execution

Context

Exec

(ALU)

Fetch/

Decode

Execution

Context

Exec

(ALU)

Simpler cores: each core is slower at running a single instruction stream

than our original “fancy” core (e.g., 25% slower)

But there are now two cores: 𝟐 × 𝟎. 𝟕𝟓 = 𝟏. 𝟓 (potential for speedup!)

But our program expresses no parallelism

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

This C program, compiled with gcc

will run as one thread on one of the

processor cores.

If each of the simpler processor

cores was 25% slower than the

original single complicated one, our

program now runs 25% slower. :-(

Using Cilk to provide parallelism

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Loop iterations declared by the

programmer to be independent

With this information, you

could imagine how a compiler

might automatically generate

parallel threaded code

Four cores: compute four elements in parallel

Fetch/

Decode

Execution

Context

Exec

(ALU)

Fetch/

Decode

Execution

Context

Exec

(ALU)

Fetch/

Decode

Execution

Context

Exec

(ALU)

Fetch/

Decode

Execution

Context

Exec

(ALU)

Sixteen cores, sixteen simultaneous instruction streams

Sixteen cores: compute sixteen elements in parallel

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU

(2015)

NVIDIA GP104 (GTX 1080) GPU

20 replicated (“SM”) cores

(2016)

More multi-core examples

Intel Xeon Phi “Knights Corner” 72-core CPU

(2016)

Apple A9 dual-core CPU

(2015)

A9 image credit: Chipworks (obtained via Anandtech)

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1

Core 2

Data-parallel expression

Another interesting property of this code:

Parallelism is across iterations of the loop.

All the iterations of the loop carry out the

exact same sequence of instructions, but on

different input data

(to compute the sine of the input number)

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Add ALUs to increase compute capability

Idea #2:

Amortize cost/complexity of managing an

instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs

Executed in parallel on all ALUs

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

Add ALUs to increase compute capability

Recall original compiled program:

Instruction stream processes one array element

at a time using scalar instructions on scalar

registers (e.g., 32-bit floats)

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Scalar program

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Original compiled program:

Processes one array element using scalar

instructions on scalar registers (e.g., 32-bit floats)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Vector program (using AVX intrinsics)
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

{

float three_fact = 6; // 3!

for (int i=0; i<N; i+=8)

{

__m256 origx = _mm256_load_ps(&x[i]);

__m256 value = origx;

__m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

__m256 denom = _mm256_broadcast_ss(&three_fact);

int sign = -1;

for (int j=1; j<=terms; j++)

{

// value += sign * numer / denom

__m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

value = _mm256_add_ps(value, tmp);

numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));

sign *= -1;

}

_mm256_store_ps(&result[i], value);

}

}

Intrinsics available to C programmers

Vector program (using AVX intrinsics)

vloadps xmm0, addr[r1]

vmulps xmm1, xmm0, xmm0

vmulps xmm1, xmm1, xmm0

...

...

...

...

...

...

vstoreps addr[xmm2], xmm0

Compiled program:

Processes eight array elements

simultaneously using vector

instructions on 256-bit vector registers

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* result)

{

float three_fact = 6; // 3!

for (int i=0; i<N; i+=8)

{

__m256 origx = _mm256_load_ps(&x[i]);

__m256 value = origx;

__m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

__m256 denom = _mm256_broadcast_ss(&three_fact);

int sign = -1;

for (int j=1; j<=terms; j++)

{

// value += sign * numer / denom

__m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

value = _mm256_add_ps(value, tmp);

numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));

sign *= -1;

}

_mm256_store_ps(&result[i], value);

}

}

16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

Data-parallel expression

Compiler understands loop iterations

are independent, and that same loop

body will be executed on a large

number of data elements.

Abstraction facilitates automatic

generation of both multi-core parallel

code, and vector instructions to make

use of SIMD processing capabilities

within a core.

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each element in

input array ‘A’, producing output into the array ‘result’)

What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each element in

input array ‘A’, producing output into the array ‘result’)

Mask (discard) output of ALU

Not all ALUs do useful work!

Worst case: 1/8 peak performance

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each element in

input array ‘A’, producing output into the array ‘result’)

After branch: continue at full performance

ALU 1 ALU 2 . . . ALU 8. . .
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F

float tmp = exp(x,5.f);

tmp *= kMyConst1;

x = tmp + kMyConst2;

float tmp = kMyConst1;

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for each element in

input array ‘A’, producing output into the array ‘result’)

SIMD execution on modern CPUs

• SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)

• AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)

• AVX512 instruction: 512 bit operations: 16x32 bits…

• Instructions are generated by the compiler

- Parallelism explicitly requested by programmer using intrinsics

- Parallelism conveyed using parallel language semantics (e.g., forall example)

- Parallelism inferred by dependency analysis of loops (hard problem, even best
compilers are not great on arbitrary C/C++ code)

• Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time

- Can inspect program binary and see instructions (vstoreps, vmulps, etc.)

SIMD execution on many modern GPUs

• “Implicit SIMD”

- Compiler generates a scalar binary (scalar instructions)

- But N instances of the program are *always run* together on the processor
execute(my_function, N) // execute my_function N times

- In other words, the interface to the hardware itself is data parallel

- Hardware (not compiler) is responsible for simultaneously executing the same
instruction from multiple instances on different data on SIMD ALUs

• SIMD width of most modern GPUs ranges from 8 to 32
- Divergence can be a big issue

(poorly written code might execute at 1/32 the peak capability of the machine!)

Example: eight-core Intel Xeon E5-1660 v4

8 cores

8 SIMD ALUs per core

(AVX2 instructions)

490 GFLOPs (@3.2 GHz)

(140 Watts)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

Example: NVIDIA GTX 1080

20 cores (“SMs”) 128 SIMD ALUs per core (@1.6 GHz) = 8.1 TFLOPs (180 Watts)

Summary: parallel execution

• Several forms of parallel execution in modern processors
- Multi-core: use multiple processing cores

- Provides thread-level parallelism: simultaneously execute a completely different instruction

stream on each core

- Software/algorithms decides when to create threads (e.g., via cilk_spawn, cilk_for)

- SIMD: use multiple ALUs controlled by same instruction stream (within a core)

- Efficient design for data-parallel workloads: control amortized over many ALUs

- Vectorization can be done by compiler (explicit SIMD) or at runtime by hardware

- [Lack of] dependencies is known prior to execution (usually declared by programmer, but can

be inferred by loop analysis by advanced compiler)

- Superscalar: exploit ILP within an instruction stream. Process different instructions from
the same instruction stream in parallel (within a core)

- Parallelism automatically and dynamically discovered by the hardware during execution (not

programmer visible)

Part 2: Accessing Memory

Terminology

• Memory latency
- The amount of time for a memory request (e.g., load, store) from a

processor to be serviced by the memory system

- Example: 100 cycles, 100 nsec

• Memory bandwidth
- The rate at which the memory system can provide data to a processor

- Example: 20 GB/s

Stalls

• A processor “stalls” when it cannot run the next instruction in
an instruction stream because of a dependency on a previous
instruction.

• Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

• Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and

mem[r3] have been loaded from memory

38 GB/sec

L3 cache

(8 MB)

L1 cache

(32 KB)

L2 cache

(256 KB)

...

Memory
DDR4 DRAM

(Gigabytes)

Core 1

L1 cache

(32 KB)

L2 cache

(256 KB)

Core P

Review: why do modern processors have caches?

Processors run efficiently when data is resident in caches

Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

L3 cache

(8 MB)

L1 cache

(32 KB)

L2 cache

(256 KB)

...

Memory
DDR4 DRAM

(Gigabytes)

Core 1

L1 cache

(32 KB)

L2 cache

(256 KB)

Core P

Caches reduce length of stalls (reduce latency)

Prefetching reduces stalls (hides latency)

•All modern CPUs have logic for prefetching data into caches
- Dynamically analyze program’s access patterns, predict what it will access soon

•Reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

predict value of r3, initiate load

...

...

...

...

...

...

ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce

performance if the guess is wrong

(hogs bandwidth, pollutes caches)

(more detail later in course)

These loads are cache hits

Multi-threading reduces stalls

• Idea: interleave processing of multiple threads on the same
core to hide stalls

• Like prefetching, multi-threading is a latency hiding, not a
latency reducing technique

Runnable

Runnable

Runnable

Runnable

Hiding stalls with multi-threading

Time

1 2 3 4

Stall

Stall

Done!

Stall

Stall

Done!

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2

Elements 8 … 15

Thread 3

Elements 16 … 23

Thread 4

Elements 24 … 31

Thread 1

Elements 0 … 7

Throughput computing trade-off

Key idea of throughput-oriented systems:

Potentially increase time to complete work by any one

thread, in order to increase overall system throughput

when running multiple threads.

During this time, this thread is runnable, but it is not being executed
by the processor. (The core is running some other thread.)

Runnable

Time

1 2 3 4

Stall

Done!

Thread 2

Elements 8 … 15

Thread 3

Elements 16 … 23

Thread 4

Elements 24 … 31

Thread 1

Elements 0 … 7

Storing execution contexts

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage

(or L1 cache)

Consider on-chip storage of execution contexts a finite resource.

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Many small contexts (high latency hiding ability)

1 core (16 hardware threads, storage for small working set per thread)

Four large contexts (low latency hiding ability)

1 core (4 hardware threads, storage for larger working set per thread)

Fetch/

Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Hardware-supported multi-threading

• Core manages execution contexts for multiple threads
- Runs instructions from runnable threads (processor makes decision about which

thread to run each clock, not the operating system)

- Core still has the same number of ALU resources: multi-threading only helps use
them more efficiently in the face of high-latency operations like memory access

• Interleaved multi-threading (a.k.a. temporal multi-threading)
- What I described on the previous slides: each clock, the core chooses a thread,

and runs an instruction from the thread on the ALUs

• Simultaneous multi-threading (SMT)
- Each clock, core chooses instructions from multiple threads to run on ALUs

- Extension of superscalar CPU design

- Example: Intel Hyper-threading (2 threads per core)

Multi-threading summary

• Benefit: use a core’s execution resources (ALUs) more efficiently
-Hide memory latency
-Fill multiple functional units of superscalar architecture
-(when one thread has insufficient ILP)

• Costs
-Requires additional storage for thread contexts

-Increases run time of any single thread

(often not a problem, we usually care about throughput in parallel apps)

-Requires additional independent work in a program (more independent work than
ALUs!)

-Relies heavily on memory bandwidth

- More threads → larger working set → less cache space per thread

- May go to memory more often, but can hide the latency

A fictitious multi-core chip

16 cores

8 SIMD ALUs per core (128 total)

4 threads per core

16 simultaneous instruction streams

64 total concurrent instruction
streams

512 independent pieces of work are
needed to run chip with maximal
latency hiding ability

= SIMD function unit,

control shared across 32 units

(1 MUL-ADD per clock)

“Shared” memory

(96 KB)

Execution contexts (registers)

(256 KB)

▪ Instructions operate on 32 pieces of data at a

time (instruction streams called “warps”).

▪ Think: warp = thread issuing 32-wide vector

instructions

▪ Different instructions from up to four warps can

be executed simultaneously (simultaneous

multi-threading)

▪ Up to 64 warps are interleaved on the SM

(interleaved multi-threading)

▪ Over 2,048 elements can be processed

concurrently by a core

NVIDIA GTX 1080 core (“SM”)

Source: NVIDIA Pascal Tuning Guide

GPUs: extreme throughput-oriented processors

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

NVIDIA GTX 1080

There are 20 SM cores on the GTX 1080:

That’s 40,960 pieces of data being processed concurrently to get maximal latency hiding!

...

CPU vs. GPU memory hierarchies

76 GB/sec

L3 cache

(20 MB)

L1 cache

(32 KB)

L2 cache

(256 KB)

...

Memory
DDR4 DRAM

(Hundreds GB

to TB)

Core 1

Core 8

L1 cache

(32 KB)

L2 cache

(256 KB)

CPU:
Big caches, few

threads per core,

modest memory BW

Rely mainly on caches

and prefetching

(automatic)

GPU:
Small caches,

many threads,

huge memory BW

Rely heavily on

multi-threading for

performance

(manual)

Execution

contexts

(256 KB)

L1 cache

Scratch-

pad

(64 KB)

...

Execution

contexts

(256 KB)

L1 cache

Scratch-

pad

(64 KB)

Core 1

Core 20

L2 cache

(2 MB)

320 GB/sec
Memory
DDR5 DRAM

(4-12 GB)

Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for

application developers on throughput-optimized systems.

Bandwidth is a critical resource

Performant parallel programs will:

• Organize computation to fetch data from memory less often

- Reuse data previously loaded by the same thread

(traditional intra-thread temporal locality optimizations)

- Share data across threads (inter-thread cooperation)

• Request data less often (instead, do more arithmetic: it’s “free”)

- Useful term: “arithmetic intensity” — ratio of math operations to
data access operations in an instruction stream

- Main point: programs must have high arithmetic intensity to utilize
modern processors efficiently

Summary

• Three major ideas that all modern processors employ to varying degrees

- Provide multiple processing cores
- Simpler cores (embrace thread-level parallelism over instruction-level parallelism)

- Amortize instruction stream processing over many ALUs (SIMD)
- Increase compute capability with little extra cost

- Use multi-threading to make more efficient use of processing
resources (hide latencies, fill all available resources)

• Due to high arithmetic capability on modern chips, many parallel
applications (on both CPUs and GPUs) are bandwidth bound

• GPU architectures use the same throughput computing ideas as CPUs:
but GPUs push these concepts to extreme scales

Review slides
(additional examples for review and to check our understanding)

Putting together the concepts from this lecture:
(if you understand the following sequence you understand this lecture)

Running code on a simple processor
My very simple program:

compute sin(x) using Taylor expansion

Fetch/

Decode

Execution

Context

ALU

(Execute)

My very simple processor:

completes one instruction per clock

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

void sinx(int N, int terms, float* x, float* result)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Unmodified program

Execution

Context

My single core, superscalar processor:

executes up to two instructions per clock

from a single instruction stream.

Fetch/

Decode

Exec

1

Fetch/

Decode

Exec

2

Independent operations in

instruction stream

(They are detected by the processor

at run-time and may be executed in

parallel on execution units 1 and 2)

Review: superscalar execution

Modify program to create two threads
of control (two instruction streams)

My dual-core processor:

executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: multi-core execution (two cores)

Modify program to create two threads
of control (two instruction streams)

My superscalar dual-core processor:

executes up to two instructions per clock

from an instruction stream on each core.

Execution
Context

Fetch/

Decode

Exec

1

Fetch/

Decode

Exec

2

Execution
Context

Fetch/

Decode

Exec

1

Fetch/

Decode

Exec

2

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: multi-core + superscalar execution

Modify program to create many threads of control

My quad-core processor:

executes one instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: multi-core (four cores)

Observation: program must execute many iterations of the same loop body.

Optimization: share instruction stream across execution of multiple
iterations (single instruction multiple data = SIMD)

My SIMD quad-core processor:

executes one 8-wide SIMD instruction per clock

from an instruction stream on each core.

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: four, 8-wide SIMD cores

void sinx(int N, int terms, float* x, float* result)

{

cilk_for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;

numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);

sign *= -1;

}

result[i] = value;

}

}

Review: four SIMD, multi-threaded cores
Observation: memory operations have very long latency

Solution: hide latency of loading data for one iteration by
executing arithmetic instructions from other iterations

Fetch/
Decode

Memory load

Memory store

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

Fetch/
Decode

Execution
Context

Execution
Context

My multi-threaded, SIMD quad-core processor:

executes one SIMD instruction per clock

from one instruction stream on each core. But

can switch to processing the other instruction

stream when faced with a stall.

Summary: four superscalar, SIMD, multi-threaded cores

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

My multi-threaded, superscalar, SIMD quad-core processor:

executes up to two instructions per clock from one instruction stream on each core

(in this example: one SIMD instruction + one scalar instruction).

Processor can switch to execute the other instruction stream when faced with stall.

Connecting it all together

A simple quad-core processor:

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

Execution
Context

Execution
Context

Fetch/

Decode
Fetch/

Decode

SIMD Exec 2

Exec 1

L1 Cache

L2 Cache

L3 Cache
Memory

Controller

Memory Bus

(to DRAM)

On-chip

interconnect

Four cores, two-way multi-threading per core (max eight threads active on chip at once), up to two

instructions per clock per core (one of those instructions is 8-wide SIMD)

