
Spatial Storage and Indexing

Outline

• Recap:

– Physical data model

– Physical data organization (file structures)

• Space filling curves, e.g., Z-curve and Hilbert curve

• Spatial index structures, e.g., grid, R-tree, and quad-tree

RECAP

Physical Model – Analogy with Vehicles

• Logical models:

• Car: accelerator pedal, steering wheel, brake pedal, …

• Bicycle: pedal forward to move, turn handle, pull brakes on handle

• Physical models :

• Car: engine, transmission, master cylinder, break lines, brake pads, …

• Bicycle: chain from pedal to wheels, gears, wire from handle to brake pads

• We now go, so to speak, “under the hood”

3

Physical Model – Motivational Query

• Input

Given: (1) my location L,

 (2) 100 millions spatial facilities (restaurants, schools, hotels, etc)

Output

 Find the nearest 3 facilities to my location L

3

Physical Model – Motivational Query

• Input

Given: (1) my location L,

 (2) 100 millions spatial facilities (restaurants, schools, hotels, etc)

Output

 Find the nearest 3 facilities to my location L

• Logical models:

• Express query in a high-level language, what are the operators?

• Ex.: SELECT * FROM Facilities F WHERE Nearest(3, F.Loc, L)

3

Physical Model – Motivational Query

• Input

Given: (1) my location L,

 (2) 100 millions spatial facilities (restaurants, schools, hotels, etc)

Output

 Find the nearest 3 facilities to my location L

• Logical models:

• Express query in a high-level language, what are the operators?

• Ex.: SELECT * FROM Facilities F WHERE Nearest(3, F.Loc, L)

• Physical models:

• How spatial objects are physically stored and organized in files?

• How spatial objects are retrieved from files?

3

Physical Model – Motivational Query

• Input: Given my location L, and 100 millions spatial facilities

Output: Find the nearest 3 facilities to my location L

• Physical models examples:

• One way:

store all objects in one file in random order, then scan all objects to get the

nearest 3 objects to L

3

Physical Model – Motivational Query

• Input: Given my location L, and 100 millions spatial facilities

Output: Find the nearest 3 facilities to my location L

• Physical models examples:

• One way:

store all objects in one file in random order, then scan all objects to get the

nearest 3 objects to L

• Another way:

store multiple files, each file contains portion of data, then locate files

relevant to L to retrieve objects

3

What is a Physical Data Model of a Database?

• Concepts to implement logical data model

• Using current components, e.g. computer hardware,

operating systems

• In an efficient and fault-tolerant manner

4

Why Learn Physical Data Model Concepts?

• To be able to choose between DBMS brand names

• Some brand names do not have spatial indices!

• To be able to use DBMS facilities for performance tuning

• For example, If a query is running slow,

• One may create an index to speed it up

• For example, if loading of a large number of tuples takes for ever

• One may drop indices on the table before the inserts

• And recreate index after inserts are done!

5

Concepts in a Physical Data Model

• Database concepts

• Conceptual data model - entity, (multi-valued) attributes, relationship, …

• Logical model - relations, atomic attributes, primary and foreign keys

• Physical model - secondary storage hardware, file structures, indices, …

6

Concepts in a Physical Data Model –

Examples from Relational DBMS

• Secondary storage hardware: Disk drives

• File structures - sorted

• Auxiliary search structure -

• Search trees (hierarchical collections of one-dimensional ranges)

8

An Interesting Fact about Physical Data Model

• Physical data model design is a trade-off between

• Efficiently support a small set of basic operations of a few data types

• Simplicity of overall system

• Each DBMS physical model

• Choose a few physical DM techniques

• Choice depends chosen sets of operations and data types

9

An Interesting Fact about Relational DBMS

Physical Model

• Data types: numbers, strings, date, currency

• One-dimensional, totally ordered

• Operations:

• Search on one-dimensional totally order data types

• Insert, delete, ...

10

Physical Data Model for SDBMS

• Is relational DBMS physical data model suitable for spatial

data?

• Relational DBMS has simple values like numbers

• Sorting, search trees are efficient for numbers

• These concepts are not natural for Spatial data (e.g. points in a plane)

• Reusing relational physical data model concepts

• Space filling curves define a total order for points

• This total order helps in using ordered files, search trees

• But may lead to computational inefficiency!

11

Physical Data Model for SDBMS –

New Spatial Techniques

• Spatial indices, e.g. grids, hierarchical collection of rectangles

• Provide better computational performance

12

Common assumptions for SDBMS physical

model – Spatial Data

• Dimensionality of space is low, e.g. 2 or 3

• Data types: OGIS data types

• Approximations for extended objects (e.g. linestrings, polygons)

• Minimum Orthogonal Bounding Rectangle (MOBR or MBR)

• MBR(O) is the smallest axis-parallel rectangle enclosing an object O

• Supports filter and refine processing of queries

13

Common Spatial Queries

• Physical model provides simpler operations needed by

spatial queries!

• Common Queries

• Range query: Find all objects within a query rectangle.

• k-nearest neighbor: Find k points closest to a query point.

• Join query: Find all intersecting objects from two spatial datasets.

15

Common Spatial Operations

• Common operations across spatial queries
• Find : retrieve records satisfying a condition on attribute(s)

• Findnext : retrieve next record in a dataset with total order

• After the last one retrieved via previous find or findnext

• Nearest neighbor of a given object in a spatial dataset

16

Storage Hierarchy in Computers –

Types of Storage Devices

• Main memories - fast but content is lost when power is off

• Secondary storage - slower, retains content without power

• Tertiary storage - very slow, retains content, very large capacity

20

Storage Hierarchy in Computers –

DBMS Usually Manage Data

• On secondary storage, e.g. disks

• Use main memory to improve performance

• User tertiary storage (e.g. tapes) for backup, archival etc.

21

Software View of Disks: Fields, Records and File

• Views of secondary storage (e.g. disks)
• Data on disks is organized into fields, records, files

28

Software View of Disks: Fields, Records and

File – Concepts

• Field presents a property or attribute of a relation or an entity

• Records represent a row in a relational table
• Collection of fields for attributes in relational schema of the table

• Files are collections of records
• Homogeneous collection of records may represent a relation

• Heterogeneous collections may be a union of related relations

29

Mapping Records and Files to Disk

• Records

• Often smaller than a sector

• Many records in a sector

• Files with many records

• Many sectors per file

• File system

• Collection of files

• Organized into directories

• Mapping tables to disk

• Figure 4.1

• City table takes 2 sectors

• Others take 1 sector each

30

Figure 4.1

File Structures

• What is a file structure?

• A method of organizing records in a file

• For efficient implementation of common file operations on disks

• Example: ordered files

• Measure of efficiency

• I/O cost: Number of disk sectors retrieved from secondary storage

• CPU cost: Number of CPU instruction used

• See Table 4.1 for relative importance of cost components

• Total cost = sum of I/O cost and CPU cost

34

Common File Structures

• Heap or unordered or unstructured

• Ordered

• Hashed

37

File Structures – Common File Operations

• Find: key value --> record matching key values

• Findnext --> Return next record after find if records were sorted

• Insert --> Add a new record to file without changing file-structure

• Nearest neighbor of a object in a spatial dataset

35

File Structures – Examples Using Figure 4.1

• Find(Name = Canada) on Country

table returns record about Canada

• Findnext() on Country table returns

record about Cuba

• Since Cuba is next value after

Canada in sorted order of Name

• Insert(record about Panama) into

Country table

• Adds a new record

• Location of record in Country file

depends on file-structure

• Nearest neighbor Argentina in country

table is Brazil

36

Figure 4.1

Common File Structures

• Heap or unordered or unstructured

• Ordered

• Hashed

37

Basic Comparison of Common File Structures

• Heap file is efficient for inserts and used for log files

• But find, findnext, etc. are very slow

• Hashed files are efficient for find, insert, delete etc.

• But findext is very slow

• Ordered file organization are very fast for findnext

• And pretty competent for find, insert, etc.

38

File Structures: Heap

• Records are in no particular

order (Example: Figure 4.1)

• Insert can simple add record to

the last sector

• Find, findnext, nearest

neighbor scan the entire files

39

Figure 4.1

File Structures: Ordered

• Records are sorted by a selected field (Example Fig. 4.3 below)

• Findnext can simply pick up physically next record

• Find, insert, delete may use binary search, is very efficient

• Nearest neighbor processed as a range query

40

Figure 4.3

File Structures: Hash - Components

• A set of buckets (sectors)

• Hash function : key value --> bucket

• Hash directory: bucket --> sector

41

Figure 4.2

File Structures: Hash - Operations

• Find, insert, delete are fast

• Compute hash function

• Lookup directory

• Fetch relevant sector

• Findnext, nearest neighbor are slow

• No order among records

Figure 4.2

42

RECAP HIGHLIGHTS

Concepts in a Physical Data Model

• Database concepts

• Conceptual data model - entity, (multi-valued) attributes, relationship, …

• Logical model - relations, atomic attributes, primary and foreign keys

• Physical model - secondary storage hardware, file structures, indices, …

6

File Structures

• What is a file structure?

• A method of organizing records in a file

• For efficient implementation of common file operations on disks

• Example: ordered files

• Measure of efficiency

• I/O cost: Number of disk sectors retrieved from secondary storage

• CPU cost: Number of CPU instruction used

• See Table 4.1 for relative importance of cost components

• Total cost = sum of I/O cost and CPU cost

34

Common File Structures

• Heap or unordered or unstructured

• Ordered

• Hashed

37

Space Filling Curves

45

• How to order country names?

Space Filling Curves

45

• How to order country names?

• Alphabetical order (total order, linear order)

Space Filling Curves

45

• How to order country names?

• Alphabetical order (total order, linear order)

• How to order country spatial locations?

Space Filling Curves

45

• How to order country names?

• Alphabetical order (total order, linear order)

• How to order country spatial locations?

• There is no linear order

• There is no total order

Space Filling Curves

45

• How to order country names?

• Alphabetical order (total order, linear order)

• How to order country spatial locations?

• There is no linear order

• There is no total order

• Why do we need to order?

Space Filling Curves

45

• How to order country names?

• Alphabetical order (total order, linear order)

• How to order country spatial locations?

• There is no linear order

• There is no total order

• Why do we need to order?

• Speed-up searching

• Use binary search, which is faster than linear search

Space Filling Curves

45

• Space Filling Curves (Geo-hashing)

• Discretized two-dimensional space

• Suggest a sorting order on points

– Ex.: row-major, column-major, Z-curve, Hilbert-curve, …

Space Filling Curves

45

• Naïve:

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

0 1 2 3

0

1

2

3

Space Filling Curves

45

• Naïve:

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

0 1 2 3

0

1

2

3

Space Filling Curves

45

• Naïve:
0 1 2 3

0

1

2

3

Space Filling Curves

45

• A better order:

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 2 3

0

1

2

3

Space Filling Curves

45

• A better order:

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 2 3

0

1

2

3

Space Filling Curves

45

• A better order:
0 1 2 3

0

1

2

3

Space Filling Curves

45

• A better order: Z-curve
0 1 2 3

0

1

2

3

Z – Curve

• Computing Z-value of a point

• Generated from interleaving bits

• x, y coordinate (see Fig. 4.6)

• Connecting points by z-order

• Looks like Ns or Zs

• Searching for a point P

• Assume pointed sorted by Z-order

• Compute Z-order for P

• Binary search

Figure 4.6

Figure 4.4

46

n=0 n=1 n=2 n=3

A A A

AA

Figure 4.4

Space Filling Curves

45

• An alternative order: Hilbert curve

0 1 14 15

3 2 13 12

4 7 8 11

5 6 9 10

0 1 2 3

0

1

2

3

Hilbert Curve

• More complex to generate

• Due to rotations

• Searching for a point P

• Assume ordered pointed

• Compute Hilbert-order for P

• Binary search

Figure 4.5

48

Calculating Hilbert Values (Optional Topic)

Figure 4.8

49

Handling Regions

• Challenge: non-unique values!

Figure 4.9

50

Z-order and Extended Objects

• Figure 4.7

• Left part shows a map with spatial object A, B, C

• Right part and Left bottom part Z-values within A, B and C

• Note C gets z-values of 2 and 8, which are not close

1

2

1

4

3

2

1

Object Points y x interleave z-value

A

B

00 11A

B

C 01 00

0010

00 0110 11

10

11

00

01

X
Y

0101

0010

1000

5

2

8

C

0 4 8 12 16

Figure 4.7

47

Common assumptions for SDBMS physical

model – Spatial Data

• Dimensionality of space is low, e.g. 2 or 3

• Data types: OGIS data types

• Approximations for extended objects (e.g. linestrings, polygons)

• Minimum Orthogonal Bounding Rectangle (MOBR or MBR)

• MBR(O) is the smallest axis-parallel rectangle enclosing an object O

• Supports filter and refine processing of queries

13

Common Spatial Queries

• Physical model provides simpler operations needed by

spatial queries!

• Common Queries

• Range query: Find all objects within a query rectangle.

• k-nearest neighbor: Find k points closest to a query point.

• Join query: Find all intersecting objects from two spatial datasets.

15

What is an index?

• Concept of an index
• Auxiliary file to search a data file

• Example: Fig. 4.10

• Index records have
• Key value

• Address of relevant data sector

 (see arrows in Fig. 4.10)

• Index records are ordered
• Find, findnext, insert are fast

• Note assumption of total order
• On values of indexed attributes

52

Figure 4.10

Classifying indexes

• Classification criteria
• Data-file-structure

• Key data type

• Others

• Secondary index
• Heap data file

• 1 index record per data record

• Example: Fig. 4.10

• Primary index
• Data file ordered by indexed attribute

• 1 index record per data sector

• Example: Fig. 4.11

53

Figure 4.11

Question

Why is a file/table can have at most one primary

index?

54

Question

Why is a file/table can have at most one primary

index?

(a) Reduce the ambiguity for users

(b) Data file is physically ordered by the primary index

(c) Save the storage space

(d) Make query faster

54

Attribute Data Types and Indexes

• Index file structure depends on data type of indexed attribute

• Attributes with total order

• Example, numbers, points ordered by space filling curves

• B-tree is a popular index organization

• Spatial objects (e.g. polygons)

• Spatial organization are more efficient

• Hundreds of organizations are proposed in literature

• Three main families are Grid Files, R-trees, and Quadtrees

55

Popular Spatial Indexes

• Three main families are:

• Spatial Grids (Grid Files)

• R-tree (Data partitioning indexes)

• Quadtree (Space partitioning indexes)

55

An Important Question

• Can I use B-tree for spatial indexing?

https://techdifferences.com/difference-between-b-tree-and-binary-tree.html

An Important Question

• Can I use B-tree for spatial indexing?

– Yes, but it must have a total order

• For total order,

– Either use lat or long dimensions

– Or a space-filling curve order

• Or use two B-trees, one on lat, one on long

Spatial Grids

• Basic Idea: Divide geographic space
• Example: latitude-longitude, ESRI Arc/SDE

• Store data in each cell in distinct disk sector(s)

• Efficient for
• uniformly distributed data

• Operations: find, insert, nearest neighbor

• But may waste disk sectors
• Empty cells

• Non-uniform data distribution

Figure 4.12

57

From Grids to Grid Files

• 1. Use non-uniform grids (Fig. 4.14)
• Linear scale store row and column boundaries

Figure 4.14

58

1

2

3

4

Grid Files – Search Operation

• Steps
• Search linear scales

• Identify selected grid directory cells

• Retrieve selected disk sectors

– Optimization
• Scales & grid directory in main memory

• Efficient in terms of I/O costs

• Needs large main memory for grid directory

Figure 4.13

60

R–Tree Family – Basic Idea

• Hierarchical collection of rectangles organize spatial data

• Generalizes B-tree to spatial data sets

62

Example: R-tree

3

R1

R2

R3

R4

R5

R6

D

D1

D2 D3

D

R1, R2, R3 R4, R5 R6, R7

D2 D3D1

R7

Example: R+ tree

3

R1

R2

R3

R4

R5

R6

D

D1

D2 D3

D2 D3D1

D

R1, R2, R3 R4, R5 R5, R6, R7
R7

R–Tree Family – Basic Idea

• Hierarchical collection of rectangles organize spatial data

• Generalizes B-tree to spatial data sets

• Properties of R-trees
• Balanced

• Nodes are rectangle

• Child’s rectangle within parent’s

• Possible overlap among rectangle!

• Other properties in the section of R-tree family

62

Find Operation with R-tree

1. Search root to identify relevant children

2. Search selected children recursively

– Ex. Find record for rectangle 5

• Root search identifies child x

• Search of x identifies children b and c

• Search of b does not find object 5

• Search of c find object 5

Fig 4.16

Fig 4.15

65

R–Tree Family – Classifying Members

• Handling of large spatial objects
• Allow interior node rectangles to overlap - R-tree, R*-Tree

• Duplicate objects but keep interior node rectangles disjoint - R+tree

• Selection of rectangles for interior nodes
• Greedy procedures - R-tree, R+tree

• Procedure to minimize coverage, overlap – R* tree

• Other criteria exist

63

R+tree

• Properties of R+trees

• Balanced

• Interior nodes are rectangle

• Child’s rectangle within parent’s

• Disjoint rectangles

• Leaf nodes – MOBR of polygons or lines

• Leaf’s rectangle overlaps with parent’s

• Data objects may be duplicated across leafs

• Other properties in the section of R-tree family

• Find operation – same as R-tree

• But only one child is followed down in point queries

66

Comparison of Family of R trees

2

Property R Tree R + Tree R * Tree

Overlap Considerable Allowed at leaf level Minimum

Duplication No May be No

Area Minimizes Does not consider Minimizes

Margin Not Applicable Not Applicable Minimizes

Reinsertion No No Yes

Construction cost Less Somewhat More Maximum

Dynamic Comparison (Insert)

3

a b

c

e

f g

h i

1
2 3

1st level index

leafs

1 2 3

a b c e f g h i

d

d

new data

x new data: x

Initial data:

{a,b,…,h,i}

Legend

Initial R-tree

Insert in R-Tree

3

a b

c

e

f g

h i

1
2 3

1st level index

leafs
d

new data

x new data: x

Initial data:

{a,b,…,h,i}

Legend

Insert in R+ Tree

3

a b

c

e

f g

h i

1
2 3

1st level index

leafs
d

new data

x new data: x

Initial data:

{a,b,…,h,i}

Legend

Quadtree

• Hierarchical index

• Partition boundaries depend only on parent’s boundaries and not data

– space-partitioning index

vs. data-partitioning index

• More efficient in dynamic insertions

• Memory-friendly

Quadtree: Example, Node capacity=2

85 x

y

Quadtree: Example, Node capacity=2

86 x

y

Quadtree: Example, Node capacity=2

87 x

y

Quadtree: Example, Node capacity=2

88 x

y

Quadtree

• Can be seen as a multi-level

grid structure

• Different types:

– Complete quadtree vs.

partial quadtree

– Region, point, point-region, edge,

and polygon quad tree.

• Used in raster and vector data

Quadtree: Example

Iso-value in {min,max}

Iso-value not in {min,max}

Quadtree: Example

Iso-value in {min,max}

Iso-value not in {min,max}

Quadtree: Example

Iso-value in {min,max}

Iso-value not in {min,max}

Quadtree: Example

Iso-value in {min,max}

Iso-value not in {min,max}

Credits

• Prof. Tao Ju slides

– http://www.cse.wustl.edu/~taoju/cse554/lectures/lect05_Contouring_

II.ppt

http://www.cse.wustl.edu/~taoju/cse554/lectures/lect05_Contouring_II.ppt
http://www.cse.wustl.edu/~taoju/cse554/lectures/lect05_Contouring_II.ppt

	Slide 1: Spatial Storage and Indexing
	Slide 2: Outline
	Slide 3: Recap
	Slide 4: Physical Model – Analogy with Vehicles
	Slide 5: Physical Model – Motivational Query
	Slide 6: Physical Model – Motivational Query
	Slide 7: Physical Model – Motivational Query
	Slide 8: Physical Model – Motivational Query
	Slide 9: Physical Model – Motivational Query
	Slide 10: What is a Physical Data Model of a Database?
	Slide 11: Why Learn Physical Data Model Concepts?
	Slide 12: Concepts in a Physical Data Model
	Slide 13: Concepts in a Physical Data Model – Examples from Relational DBMS
	Slide 14: An Interesting Fact about Physical Data Model
	Slide 15: An Interesting Fact about Relational DBMS Physical Model
	Slide 16: Physical Data Model for SDBMS
	Slide 17: Physical Data Model for SDBMS – New Spatial Techniques
	Slide 18: Common assumptions for SDBMS physical model – Spatial Data
	Slide 19: Common Spatial Queries
	Slide 20: Common Spatial Operations
	Slide 21: Storage Hierarchy in Computers – Types of Storage Devices
	Slide 22: Storage Hierarchy in Computers – DBMS Usually Manage Data
	Slide 23: Software View of Disks: Fields, Records and File
	Slide 24: Software View of Disks: Fields, Records and File – Concepts
	Slide 25: Mapping Records and Files to Disk
	Slide 26: File Structures
	Slide 27: Common File Structures
	Slide 28: File Structures – Common File Operations
	Slide 29: File Structures – Examples Using Figure 4.1
	Slide 30: Common File Structures
	Slide 31: Basic Comparison of Common File Structures
	Slide 32: File Structures: Heap
	Slide 33: File Structures: Ordered
	Slide 34: File Structures: Hash - Components
	Slide 35: File Structures: Hash - Operations
	Slide 36: rEcap highlights
	Slide 37: Concepts in a Physical Data Model
	Slide 38: File Structures
	Slide 39: Common File Structures
	Slide 40: Space Filling Curves
	Slide 41: Space Filling Curves
	Slide 42: Space Filling Curves
	Slide 43: Space Filling Curves
	Slide 44: Space Filling Curves
	Slide 45: Space Filling Curves
	Slide 46: Space Filling Curves
	Slide 47: Space Filling Curves
	Slide 48: Space Filling Curves
	Slide 49: Space Filling Curves
	Slide 50: Space Filling Curves
	Slide 51: Space Filling Curves
	Slide 52: Space Filling Curves
	Slide 53: Space Filling Curves
	Slide 54: Z – Curve
	Slide 55: Space Filling Curves
	Slide 56: Hilbert Curve
	Slide 57: Calculating Hilbert Values (Optional Topic)
	Slide 58: Handling Regions
	Slide 59: Z-order and Extended Objects
	Slide 60: Common assumptions for SDBMS physical model – Spatial Data
	Slide 61: Common Spatial Queries
	Slide 62: What is an index?
	Slide 63: Classifying indexes
	Slide 64: Question
	Slide 65: Question
	Slide 66: Attribute Data Types and Indexes
	Slide 67: Popular Spatial Indexes
	Slide 68: An Important Question
	Slide 69: An Important Question
	Slide 70: Spatial Grids
	Slide 71: From Grids to Grid Files
	Slide 72: Grid Files – Search Operation
	Slide 73: R–Tree Family – Basic Idea
	Slide 74: Example: R-tree
	Slide 75: Example: R+ tree
	Slide 76: R–Tree Family – Basic Idea
	Slide 77: Find Operation with R-tree
	Slide 78: R–Tree Family – Classifying Members
	Slide 79: R+tree
	Slide 80: Comparison of Family of R trees
	Slide 81: Dynamic Comparison (Insert)
	Slide 82: Insert in R-Tree
	Slide 83: Insert in R+ Tree
	Slide 84: Quadtree
	Slide 85: Quadtree: Example, Node capacity=2
	Slide 86: Quadtree: Example, Node capacity=2
	Slide 87: Quadtree: Example, Node capacity=2
	Slide 88: Quadtree: Example, Node capacity=2
	Slide 89: Quadtree
	Slide 90: Quadtree: Example
	Slide 91: Quadtree: Example
	Slide 92: Quadtree: Example
	Slide 93: Quadtree: Example
	Slide 94: Credits

