Principles of Internet Design

CS204: Advanced Computer Networks

Oct 4, 2023

Adapted from Jiasi's CS 204 slides for Spring 23

Agenda

- Internet History
- More Overview
 - Modularity through layering
 - Data, control, and management plane
 - Best-effort packet delivery
- Design philosophy of the Internet
 - What we have now
 - How it came about

Q: What are the general principles of Internet design?

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

Birthplace of the Internet UCLA Boelter Hall 3420 Donors Mark Cuban* Tetsuya Nakamura Eric Schmidt*

The Shen Family*

Aster Miso-Prince Ltd. Gackt Itabashi Medical System Group Masaaki Ito The Lynch Family Foundation*

Yohei Midorikawa Go Nakamura Sheng-Chih Coco Pao Vijayakumar Tella*

> Wayne Smith* Kazuhisa Sugita Naohiro Takahashi Tomoko Takahashi Hiromi Takekawa Naoko Tamada Family Natsuko Tamaka Family Shohei Tsujita Hirohisa Uematsu Kenji Umetsu Family Tomoki Yamanaka Hong Yuan Xianrong Zheng Xunwei Wilson Zhou

and Brad Fidler 2012

COMPUTER SER OPERATOR DOWNTIME PROBLEM & REMEDY DATE METER 10 9 69 09 45 Contacted by D. Garigan Jon To transfel field talephone requests from SRI (truet thatch et al.) They request Operation of Program loaded into Imp. I Loades "copy 1 of Sapt 4 Imp" tope according to "operational imp test program tast" write up. Several call exchanged IMP - IMP messages sent buth ways & Host to IMP and I'mp to Host semt UCLA Host and SRI IMP Sent and work! They will send "manification instruction Via Impty and call Realistation 10 35 Jon CUSTOMER SERVICE 5D8-5-324

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- late70' s: proprietary architectures: DECnet, SNA, XNA
- late 70' s: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- early 1990' s: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990' s - 2000' s:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present

- ~1 billion hosts
 - Smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook: nearly 2 billion active users
 - Tiktok: 1 billion monthly active users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, email, etc.
- E-commerce, universities, enterprises running their services in cloud (e.g., Amazon EC2)
- Live video conference (e.g., Zoom)

More review on Internet

Modularity through layering

Protocol Stack

Application	Applications			
Transport	Reliable streams	Messages		
Network	Best-effort global packet delivery			
Link	Best-effort local packet delivery			

IP Suite: End Hosts vs. Routers

Layer Encapsulation

Ele Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

1.4.0000 2.7	tioniau r		
Contraction of the second	and a state of the	and the second second	

No.	Time	Source	Destination	Protocol	Length info			
	10.000	192.168.0.2	35.227.244.186	HTTP	732 POST / HTTP/1.1 (application/ison)			
	2 2.422	192.168.0.2	35.241.52.229	HTTP	959 POST /v1/events HTTP/1.1 (application/ison)			
	3 2.596	192.168.0.2	35.241.52.229	TCP	508 49322 - 443 [PSH, ACK] Seg=920 Ack=148 Win=65535 Len=468 [TCP			
	4 2.597	192.168.0.2	35.241.52.229	TCP	8232 49322 - 443 [PSH, ACK] Seg=1388 Ack=148 Win=65535 Len=8192 [T.,			
	5 2.599	192.168.0.2	35.241.52.229	HTTP	3839 POST /v1/events HTTP/1.1 (application/json)			
	6 6.457	192.168.0.2	35,190,78,8	HTTP	4378 POST /api/v2/projects/99b1a9cd-c61e-438a-8e39-fbd94680de47/re			
	7 6.545	192.168.0.2	35.190.78.8	HTTP	4357 POST /api/v2/projects/99b1a9cd-c61e-438a-8e39-fbd94680de47/re			
	8 9.726	192.168.0.2	172.67.32.167	HTTP	455 GET /api/1/config?organization=vrchat HTTP/1.1			
	9 31.869	192.168.0.2	35.227.244.186	HTTP	732 POST / HTTP/1.1 (application/json)			
	10 32.523	192.168.0.2	35.241.52.229	HTTP	5623 POST /v1/events HTTP/1.1 (application/json)			
	11 33.020	192.168.0.2	35.241.52.229	HTTP	1365 POST /v1/events HTTP/1.1 (application/json)			
	12 35.750	192.168.0.2	35.190.78.8	HTTP	4378 POST /api/v2/projects/99b1a9cd-c61e-438a-8e39-fbd94680de47/re			
	13 35.817	192.168.0.2	35.190.78.8	HTTP	4357 POST /api/v2/projects/99b1a9cd-c61e-438a-8e39-fbd94680de47/re			
C	14 38.020	192.168.0.2	52.27.2.94	TCP	269 50708 -> 443 [PSH, ACK] Seg=1 Ack=1 Win=65535 Len=229 [TCP seg.			
	15 38.021	192.168.0.2	52.27.2.94	TCP	2088 50708 - 443 [PSH, ACK] Seq=230 Ack=1 Win=65535 Len=2048 [TCP			
	16 38.022	192.168.0.2	52.27.2.94	TCP	2088 50708 - 443 [PSH, ACK] Seq=2278 Ack=1 Win=65535 Len=2048 [TCP			
+-	17 38.022	192.168.0.2	52.27.2.94	HTTP	1721 POST /httpapi HTTP/1.1 (application/x-www-form-urlencoded)			
	18 38.640	192.168.0.2	172.67.32.167	HTTP	477 GET /api/1/config?organization=vrchat HTTP/1.1			
	19 47.023	192.168.0.2	157.240.11.32	SSL	412 Continuation Data			
	20 47.522	192.168.0.2	157.240.11.32	TCP	44 40732 - 443 [PSH, ACK] Seq=373 Ack=2417 Win=65535 Len=4 [TCP			
	21 47.560	192.168.0.2	157.240.11.32	SSL	44 Continuation Data			
	22 47.583	192.168.0.2	157.240.11.32	TCP	44 40732 → 443 [PSH, ACK] Seq=381 Ack=2417 Win=65535 Len=4 [TCP			
	23 47.600	192.168.0.2	157.240.11.32	SSL	44 Continuation Data			
	24 70.787	192.168.0.2	35.227.244.186	HTTP	731 POST / HTTP/1.1 (application/json)			
	25 71.219	192.168.0.2	35.241.52.229	HTTP	5572 POST /v1/events HTTP/1.1 (application/json)			
	26 71.439	192.168.0.2	35.241.52.229	HTTP	1215 POST /v1/events HTTP/1.1 (application/json)			
	27 74.653	192.168.0.2	35.190.78.8	HTTP	4377 POST /api/v2/projects/99b1a9cd-c61e-438a-8e39-fbd94680de47/re			
	28 74.724	192.168.0.2	35.190.78.8	HTTP	4356 POST /api/v2/projects/99b1a9cd-c61e-438a-8e39-fbd94680de47/re			
	29 74.827	192.168.0.2	69.171.250.34	SSL	412 Continuation Data			
+ Pa	cket comments							
+ Fr	ame 15: 2088 byte	es on wire (16704 b	its), 2008 bytes captur	ed (16704	bits) on interface WIFI, id 0			
Ra	w packet data							
+ In	ternet Protocol \	Version 4, Src: 193	.168.0.2, Dst: 52.27.2.	94				
+ Tr	ansmission Contro	ol Protocol, Src Po	rt: 50708, Dst Port: 44	3, Seq: 23	10, Ack: 1, Len: 2048			
	Source Port: 507	08						
	Destination Port	: 443						
[Stream index: 9]								
	[TCP Segment Len	: 2048]						
	Sequence number:	230 (relative	sequence number)					
	Sequence number (raw): 229							
0.04	24 15 62 50		and an annual state of the state					
001	59 18 11 14 25	A4 00 00 00 00 0	4 A	ant k	81/2			
0020	0020 90 16 11 11 33 44 60 00 61 10 69 51 60 65 79 30 Priston apl_key=							
	00400 63 39 32 31 38 36 36 63 59 32 30 34 37 62 38 31 c921666 9264514							
005	26 65 76 65 6e 74 3d 25 35 42 25 37 42 25 32 32 Aevent=% 58%/8%22							
	060 75 73 65 79 57 60 64 95 39 39 35 35 41 6a 75 6c user idk 29834nul							

1%2C%20% 22device

id%22%3 A%22b991

56a32b30 74c26b77

31740f1c d142%22%

2C%20%22 event id

0070 6c 25 32 43 25 32 30 25 32 32 64 65 76 69 63 65

0000 5f 69 64 25 32 32 25 33 41 25 32 32 62 39 39 31

0090 35 36 61 33 32 62 33 30 37 34 63 32 36 62 37 37

00n0 33 31 37 34 30 66 31 63 64 31 34 32 25 32 32 25

00b0 32 43 25 32 30 25 32 32 65 76 65 6e 74 5f 69 64

00c0 25 32 32 25 33 41 30 25 32 43 25 32 30 25 32 32 %22%3A0% 2C%20%22 00d0 65 76 65 6e 74 5f 74 79 70 65 25 32 32 25 33 41 event_ty pe%22%3A 00e0 25 32 32 41 64 6d 69 6e 5f 41 70 70 4f 70 65 6e %22Admin _AppOpen

00f0 25 32 32 25 32 43 25 32 30 25 32 32 73 65 73 73 %22%2C%2 0%22sess

The "Narrow Waist" of IP

The waist facilitates interoperability

The narrow waist of IP

"The Evolution of Layered Protocol Stacks Leads to an Hourglass-Shaped Architecture", SIGCOMM 2011.

Q: Why does the Internet protocol stack resemble an hourglass?

• Theory 1

• IP is a global address, so no need for two naming systems?

• Theory 2

- Lower layers are diverse (e.g. wireless, optical, cable)
- Higher layers are also diverse (e.g. voice, video, file transfer)

 \rightarrow IP layer in the middle must be more general (and hence unique)?

- Theory 3
 - Analytic birth/death model?

Any Alternatives to TCP/IP?

- Named data networking (NDN)
 - Universal names for content, instead of IP addresses
 - e.g., weather/riverside/yesterday, video/horror/freddy/chunk1
 - Forwarding and routing based on name prefixes

Data, Control, and Management Planes

Inside the Network

Forward packets from the sender to the receiver

Split into Data vs. Control Plane

- Data plane: packets
 - Handle individual packets as they arrive
 - Forward, drop, or buffer
 - Mark, shape, schedule, ...
- Control plane: events
 - Track changes in network topology
 - Compute paths through the network
 - Reserve resources along a path

Motivated by need for high-speed packet forwarding

Adding the Management Plane

- Making the network run well
 - Traffic reaches the right destination
 - Traffic flows over short, uncongested paths
 - Unwanted traffic is discarded
 - Failure recovery happens quickly
 - Routers don't run out of resources
- A control loop with the network
 - Measure (sense): topology, traffic, performance, ...
 - Control (actuate): configure control and data planes
- Time scales?

Best-Effort Packet-Delivery Service

Host-Network Division of Labor

Packet switching

- Divide messages into a sequence of packets
- Headers with source and destination address

• Best-effort delivery

- Packets may be lost
- Packets may be corrupted

Packets may be delivered out of order host

Host-Network Interface: Why Packets?

- Data traffic is bursty
 - Logging in to remote machines
 - Exchanging e-mail messages
- Don't want to waste bandwidth
 - No traffic exchanged during idle periods
- Better to allow multiplexing
 - Different transfers share access to same links
- Packets can be delivered by most anything
 - RFC 1149: IP Datagrams over Avian Carriers

Host-Network Interface: Why Best-Effort?

- Never having to say you're sorry...
 - Don't reserve bandwidth and memory
 - Don't do error detection & correction
 - Don't remember from one packet to next
- Easier to survive failures
 - Transient disruptions are okay during failover
- Can run on nearly any link technology
 - Greater interoperability and evolution

Intermediate Transport Layer

- But, *applications* want efficient, accurate transfer of data in order, in a timely fashion
 - Let the end hosts handle all of that
 - (An example of the "end-to-end argument")
- Transport layer can optionally...
 - Detect and retransmit lost packets
 - Put out-of-order packets back in order
 - Detect and handle corrupted packets
 - Avoid overloading the receiver
 - <insert your requirement here>

Design Philosophy of the Internet

What do we have now, and why?

Inter-networking

- *Goal*: scalable network infrastructure that connects different smaller networks together, to enable hosts on different networks to talk to each other.
- LAN approach: connect everyone!

- Key challenges with the LAN approach:
 - 1. Scaling up
 - 2. Heterogeneity

Why scaling up doesn't work

What is LAN heterogeneity?

- Sources of heterogeneity
 - Addressing
 - Bandwidth and latency
 - Packet size
 - Loss rates
 - Packet routing

• Gateways provide translation between LANs

Options for gateway functionality

- 1. Translation: translate between different LAN "languages"
 - Updates: translation may fail if LANs get updated or new features are added
 - Scalability: have to translate between many LANs
- 2. Unified network layer: define some common "words" that everyone has to understand
 - This is the current design

Key Principles of the original Internet design

- 1. Internet communication must continue despite loss of networks or gateways.
- 2. The Internet must support multiple types of communications service.
- 3. The Internet architecture must accommodate a variety of networks.
- 4. The Internet architecture must permit distributed management of its resources.
- 5. The Internet architecture must be cost effective.
- 6. The Internet architecture must permit host attachment with a low level of effort.
- 7. The resources used in the internet architecture must be accountable.

Consequences of the robustness design goals

- 1. Internet communication must continue despite loss of networks or gateways.
 - State contained in the end host, only soft state in the network
 - Soft state = information that times out (goes away) unless refreshed
 - Easily recover from errors
 - E.g., routing protocols automatically update themselves periodically
 - Complicated functionality (e.g. reliability in the transport layer) implemented in the end host
 - Network gateways kept simple
 - Fate sharing of end hosts
 - If end hosts go down, state is lost
 - If gateway fails, network can recover (soft state)
 - Conservative transmission / liberal reception
 - "Be conservative in what you send; be liberal in what you accept"
 - E.g. sender receives ACK for unknown packets; silently drops

Consequences of the universality design goals

- 2. The Internet must support multiple types of communications service.
 - Different transport-layer protocols (e.g. TCP, UDP)
 - Datagram as fundamental unit supporting the transport protocols
- 3. The Internet architecture must accommodate a variety of networks.
 - Best-effort service of datagrams
 - No special treatment of different packets (ignoring QoS)
 - No loss recovery (at the network layer)
 - Makes it easier to add new networks
 - IP-over-everything
 - Common set of names (IP addresses) and routing protocols so that gateways know how to behave

Consequences of the mgmt. design goals

- 4. The Internet architecture must permit distributed management of its resources.
 - Multiple tier-1 ISPs
 - Different intra-domain and inter-domain routing mechanisms

Consequences of the cost design goals

5. The Internet architecture must be cost effective.

- What is considered cost in this context? Extra header, retransmission, ...
- None of these seems to be problematic now

6. The Internet architecture must permit host attachment with a low level of effort.

- The cost for attachment was once considered high: Each node has to implement all the protocols that are desired
- This turns out to be the right choice! Again, "smart edge, dumb core"

Consequences of the design goals

- 7. The resources used in the internet architecture must be accountable.
 - Understanding and monitoring the usage of the resources

These goals, are listed by the author in the order of importance

- Given the possibility of a hostile environment, survivability was put as a first goal, and accountability as a last goal
- Would you re-order the goals in the modern era?

Discussions: Any other goals moving forward?

- 1. Internet communication must continue despite loss of networks or gateways.
- 2. The Internet must support multiple types of communications service.
- 3. The Internet architecture must accommodate a variety of networks.
- 4. The Internet architecture must permit distributed management of its resources.
- 5. The Internet architecture must be cost effective.
- 6. The Internet architecture must permit host attachment with a low level of effort.
- 7. The resources used in the internet architecture must be accountable.