
Application Layer:
SPDY, HTTP/2

CS204: Advanced Computer Networking
Oct 9, 2023

Adapted from Jiasi’s CS 204 slides for Spring 23

1

Overview

• Measuring webpage latency
• Strategies to reduce latency
• SPDY and HTTP/2
• SPDY over cellular networks

2

Q: How to reduce page
load times for
webpages?

What’s a Webpage?

• Hyper-text document (HTTP/0.9)
• Plain text
• Metric: document load time

• Website (HTTP/1.0, HTTP/1.1)
• Images, audio
• Non-interactive
• Metric: page load time (PLT)

• Web “application” (HTTP/1.1, HTTP/2)
• Javascript, stylesheets
• Dependencies between objects on page

3

Edge = dependency
Node size = file size

What’s in a Webpage?

4Source: httparchive.org

Web Page delivery using HTTP

5

W e b p a g e . c o m

The

Webpage.com 2

5

4

3

1

The The

W e b p a g e . c o m

2
3

4
5

Internet

Resource
Waterfall
• Analyzed UCR CS website
• www.webpagetest.org

• Different metrics
• Start render
• Document complete

6

http://www.webpagetest.org/

Page Load Time (PLT)

7

• Matters to companies
• 2 s delay on Bing decreases per-user revenue by 4.3%

Latency, not bandwidth

8Source: Mike Belshe

You can buy higher bandwidth… can you buy lower latency?

Network bandwidth

Network latency

Overview

• Measuring webpage latency
• Strategies to reduce latency
• SPDY and HTTP/2
• SPDY over cellular networks

9

Q: How to reduce page
load times for
webpages?

Reducing latency: HTTP-based strategies

10

serverclient

SYN

SYN-ACK

GET /html

GET /png

Persistent connections

HTTP pipelining not typically used
• Responses must come back in

order
• Head-of-line blocking

• Delay in retrieving 1st content
delays subsequent content

• Middleboxes may not understand
pipelining

• If server processes requests in
parallel, need to maintain large
buffers

serverclient

SYN

SYN-ACK

GET /html, /png

HTTP pipelining

Send all requests on a
single TCP connection

Reducing latency: Connection-based
strategies
• Multiple TCP connections

• Open up to 6 connections per server
• Handled by browser
• cwnd x6, effectively

• Challenges
• Extra overhead to maintain all those TCP connections

11

serverclient

Reducing latency: Content-based strategies

• Concatenating files
• JavaScript, CSS
• Less modular, large bundles

• Spriting images
• Combine multiple images into one
• What a pain...

• Domain sharding
• Store files on multiple domains (shards) so

that many TCP connections can be opened
• Congestion control who? 30+ parallel requests --- Yeehaw!!!

• Resource inlining
• TCP connections are expensive! <head>

<link rel="stylesheet" href="small.css">
</head>

<head>
<style>
.yellow {background-color: yellow;}

.blue {color: blue;}

.big { font-size: 8em; }

.bold { font-weight: bold; }
</style>
</head>

vs

server

server

client

Overview

• Measuring webpage latency
• Strategies to reduce latency
• SPDY and HTTP/2
• SPDY over cellular networks

13

Q: How to reduce page
load times for
webpages?

HTTP/0.9

$> telnet google.com 80
Connected to 74.125.xxx.xxx

GET /about/

(hypertext response)

(connection closed)

14

Simplest mode: single request, single
response, then connection close

HTTP/1.0
$> telnet website.org 80
Connected to xxx.xxx.xxx.xxx

GET /rfc/rfc1945.txt HTTP/1.0
User-Agent: CERN-LineMode/2.15 libwww/2.17b3
Accept: */*

HTTP/1.0 200 OK
Content-Type: text/plain
Content-Length: 137582
Expires: Thu, 01 Dec 1997 16:00:00 GMT
Last-Modified: Wed, 1 May 1996 12:45:26 GMT
Server: Apache 0.84

(plain-text response)

(connection closed)

15

Multi-line requests
Response header, status code
Response data not limited to plain-text

HTTP/1.1
$> telnet website.org 80
Connected to xxx.xxx.xxx.xxx

GET /index.html HTTP/1.1
Host: website.org
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4)...
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.
8
Accept-Encoding: gzip,deflate,sdchAccept-Language: en-
US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
Cookie: __qca=P0-800083390...

HTTP/1.1 200 OK
Server: nginx/1.0.11
Connection: keep-alive
Content-Type: text/html; charset=utf-8Via: HTTP/1.1 GWA
Date: Wed, 25 Jul 2012 20:23:35 GMT
Expires: Wed, 25 Jul 2012 20:23:35 GMT
Cache-Control: max-age=0, no-cache
Transfer-Encoding: chunked

(html data)

GET /favicon.ico HTTP/1.1
Host: www.website.orgUser-Agent: Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_7_4)...
Accept: */*Referer: http://website.org/
Connection: close
Accept-Encoding: gzip,deflate,sdchAccept-Language: en-
US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
Cookie: __qca=P0-800083390...

HTTP/1.1 200 OK
Server: nginx/1.0.11
Content-Type: image/x-icon
Content-Length: 3638
Connection: close
Last-Modified: Thu, 19 Jul 2012 17:51:44 GMT
Cache-Control: max-age=315360000
Accept-Ranges: bytes
Via: HTTP/1.1 GWA
Date: Sat, 21 Jul 2012 21:35:22 GMT
Expires: Thu, 31 Dec 2037 23:55:55 GMT
Etag: W/PSA-GAu26oXbDi

(icon data)
(connection closed)

16

Additional features in header (e.g. cookies, caching, character set)
Connection NOT closed after every request

Drawbacks of HTTP

• TCP works best if a session is long lived and/or exchanges a lot of data
• HTTP connections are typically short and exchange small objects
• TCP cwnd takes time to adjust to the available network capacity
• TCP does not have sufficient time to utilize the full network capacity

• Client is the only one to initiate request for an object
• Server has to let client know to request object

• Request and response headers are uncompressed
• Redundant Headers (User Agent, Host, Accept etc.)
• Headers can be large – 200 bytes to 2K bytes

17

HTTP/2.1

● Reduce end-user perceived latency over HTTP/1.1 using TCP
● Address the "head of line blocking" problem in HTTP
● Not require multiple connections to a server to enable parallelism, thus

improving its use of TCP

● Retain the semantics of HTTP/1.1, including (but not limited to)
o HTTP methods
o Status Codes
o URIs
o Header fields

● ~50% adoption as of May 2021

● SPDY (pronounced “speedy”) = precursor of HTTP/2
● Many small differences

Thanks to Ilya Grigorik for SPDY slides

Control Frame:
+----------------------------------+
|C| Version(15bits) | Type(16bits) |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
| Data |
+----------------------------------+

Data Frame:
+----------------------------------+
|D| Stream-ID (31bits) |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
| Data |
+----------------------------------+

●One TCP connection
●Request = Stream (bi-directional)

●Streams are multiplexed
●Streams are prioritized

●Binary framing
●Encode control, data frames as

binary
●No longer human readable!

●Length-prefixed
●Can quickly skip to next frame
●As opposed to newlines in HTTP 1.x

SPDY in a Nutshell

HTTP 1.1 vs HTTP 2 headers

Source: https://developers.google.com/web/fundamentals/performance/http2/

●Full request & response multiplexing
● Assign a stream id # to each request

●Mechanism for request prioritization

●Many small files? No problem
●Higher TCP window size
●More efficient use of server resources
●TCP Fast-retransmit for faster recovery

SPDY in action

curl -vv -d'{"msg":"oh hai"}' http://www.igvita.com/api

> POST /api HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0)
libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
> Host: www.igvita.com
> Accept: */*
> Content-Length: 16
> Content-Type: application/x-www-form-urlencoded

< HTTP/1.1 204
< Server: nginx/1.0.11
< Content-Type: text/html; charset=utf-8
< Via: HTTP/1.1 GWA
< Date: Thu, 20 Sep 2012 05:41:30 GMT
< Expires: Thu, 20 Sep 2012 05:41:30 GMT
< Cache-Control: max-age=0, no-cache
....

Speaking of HTTP Headers...

● Average request / response header
overhead: 800 bytes

● No compression for headers in HTTP!
● Huge overhead

● Solution: compress the headers!
o gzip all the headers
o SPDY and HTTP/2 differ in their

compression schemes

Newsflash: we are already using "server push"
●Today, we call it "inlining"
●Inlining works for unique resources, bloats

pages otherwise

SPDY Server Push
Premise: server can push resources to client

Concern: but I don't want the data! Stop it!
Client can cancel SYN_STREAM if it doesn’t want the resource

Resource goes into browser’s cache (no client API)

Advanced use case: forward proxy (e.g., Amazon's Silk can render remotely and push
content to client)

Proxy has full knowledge of your cache, can intelligently push data to the client

SPDY runs over TLS
●Philosophical reasons
●Political reasons
●Pragmatic + deployment reasons -

Bing!
Not required for HTTP/2, but often
seen in practice

Encrypt all the things!!!

Observation: intermediate proxies get in the way

Some do it intentionally, many unintentionally
Ex: Antivirus / Packet Inspection / QoS / ...

●TCP: in-order, reliable delivery...
owhat if a packet is lost?

●~1~2% packet loss rate
oCWND's get chopped
oFast-retransmit helps, but..
oSPDY stalls

HTTP Head of line blocking.... TCP Head of line blocking

client server

...

HTTP/2 Adoption (Top 50 million websites)

2017

2019

2020
2021

Overview

• Measuring latency
• Current strategies for reducing latency
• SPDY and HTTP/2
• Mobile SPDY

27

Q: How to reduce page
load times for
webpages?

Web Page delivery using HTTP

28

W e b p a g e . c o m

The

Webpage.com 2

5

4

3

1

The The

W e b p a g e . c o m

2
3

4
5

Cellular Network

Steps are similar even when a proxy is employed in the cellular network

Web Page delivery using SPDY Proxy

W e b p a g e . c o m

The

Webpage.com 2

5

4

3

The

Proxy in Network

1

The

2
3
4
5

W e b p a g e . c o m

29

Interactions between SPDY and Transport – Especially
Cellular Networks
• SPDY seemingly solves important

shortcomings with HTTP
• One long-lived TCP Connection instead of

multiple short-lived connections
• Saves on TCP connection establishment

time (important in high latency networks)
• Connection reuse allows TCP congestion

window (cwnd) to grow

Does using SPDY help improve cellular web
experience in practice?

Should operators deploy a SPDY proxy in the
cellular network?

VS

HTTP
Proxy

HTTP

HTTP
Cellular Network (HTTP)

SPDY
Proxy

HTTP

HTTP

Cellular Network (SPDY)

Thanks to KK Ramakrishnan for mobile SPDY slides 30

Test Setup

• Client used Windows7 laptop with 3G USB dongle

• Server in cloud running SPDY proxy (from Google)

and HTTP proxy (Squid)
• Mimics typical cellular deployment

• Placed client in carefully chosen location
• To prevent handover effects, we avoided placing client near

cell edge

• Relatively strong RSSI signal (-47 to -52 dBm)

• Experiments conducted during nights (12AM – 6AM) during
light cell load conditions

• Sufficient backhaul capacity; eliminate backhaul bottleneck

• Used a test server for controlled experiments with

web page content

31

Internet

Cellular

Network

Cloud

Test

Server

SPDY
Proxy

HTTP
Proxy

Test Execution and Methodology

• Visited top websites used by mobile users
• Found in top 50 Alexa web pages also; eliminate landing pages

(e.g., Facebook login page)

• Use “full” web site (as opposed to mobile pages)
• Mimics tablets and cellular-equipped laptops
• Existing work shows mobile page content similar to full page

• Test execution via automated client (written in Ruby)
• Uses Chrome remote debugger capability
• Executes one run with HTTP followed by SPDY;
• Request new page every minute to account for page load and

“think” time
• Record detailed network statistics and page load time

• Packet capture (using tcpdump) and TCP statistics
(using tcpprobe) on proxy server

32

Value

Num. of websites 20

Num. of objects/site 5 – 323

Num. of domains 3 – 84

Time between pages 60 seconds

Page Load Time in 3G cellular network

33

No convincing winner between HTTP and SPDY; Sharp contrast to existing
results on SPDY

Page Load Time with WiFi Network

34

• Check if result was a
consequence of
setup

• Ran tests with laptop
connecting via WiFi
• WiFi router connects to

Internet via broadband

• Same test procedure and
sites

SPDY performs better than HTTP consistently with page load time improvements
ranging from 4% to 56% with WiFi

TCP Congestion Window fluctuates with SPDY
Expectation would be for cwnd and ssthresh to grow and stabilize.

However, cwnd and
ssthresh fluctuate

throughout the run.

Lots of retransmissions

35

Congestion window with SPDY tick tock…

Cwnd and ssthresh
are initially small due

to multiple re-tx
between 0-60 sec.

Grow as data is
transferred

cwnd>ssthresh. TCP
stays in congestion

avoidance.

No data transferred and
cellular connection goes

to idle.

Idle triggers
tcp_slow_start_after_idle.

cwnd = 10

TCP RTO < cellular
promotion delay à

resulting in re-tx.

cwnd is reduced and
ssthresh is set to value

based on cwnd. TCP
enters slow start and

quickly rebounds.
36

• RTO = TCP re-transmission
timeout

• Cellular promotion delay =
delay when cellular connection
moves from idle to active (~2 s)

• Re-tx = Packet retransmission

Impact of Cellular State Machine

Having device always in “active” mode results in lower page load times. 37

Idea: send pings to make the connection continuously active.

Sources

1. “SPDY: An experimental protocol for a faster web,” Google,
http://www.chromium.org/spdy/spdy-whitepaper.

2. “How Speedy is SPDY?,” Wang et al., NSDI 2014.
3. “Towards a SPDY’ier Mobile Web?,” Erman et al., IEEE Trans.

Networking, 2015.
4. High Performance Browser Networking, Ilya Grigorik, O’Reilly, 2013.
5. Computer Networking: A Top-Down Approach (6th ed), James

Kurose and Keith Ross, 2011.

38

