
Peer-to-Peer (P2P)
CS204: Advanced Computer Networks

Oct 11, 2023
Adapted from Jiasi’s CS 204 slides for Spring 23

1

Overview

• Basics
• Historical P2P
• Napster
• Gnutella
• KaZaA

• Distributed hash tables
• Basics
• Chord
• BitTorrent

2

Q: How to share efficiently
search for and share files
between peers?

Pure P2P architecture

• no always-on server
• arbitrary end systems

directly communicate
• peers are intermittently

connected and change IP
addresses

examples:
• file distribution

(BitTorrent)
• Streaming
• VoIP (original Skype)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server to N
peers?

• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server
upload capacity

ui: peer i upload
capacity

di: peer i
download
capacity

u2 d2
u1 d1

di

ui

File distribution time: client-server

• server transmission: must
sequentially send (upload) N
file copies:

• time to send one copy: F/us

• time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach Dc-s > max{NF/us,F/dmin}

v client: each client must
download file copy
§ dmin = min client download rate
§ min client download time: F/dmin

us

network
di

ui

F

File distribution time: P2P

• server transmission: must
upload at least one copy

• time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

v client: each client must
download file copy
§ min client download time: F/dmin

v clients: as aggregate must download NF bits
§ max upload rate (limiting max download rate) is us + Sui

… but so does this, as each peer brings service capacity
increases linearly in N …

2-7

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

2-8

P2P file distribution

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

v file divided into 256Kb chunks (for example)
v peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

2-9

• peer joining torrent:
• has no chunks, but will

accumulate them over time
from other peers

• registers with tracker to get list
of peers, connects to subset of
peers (“neighbors”)

P2P file distribution

v while downloading, peer uploads chunks to other peers
v peer may change peers with whom it exchanges chunks
v churn: peers may come and go
v once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

What can P2P teach us about infrastructure
design?
• Resistant to DoS and failures
• Safety in numbers, no single point of failure

• Self-assembling
• Nodes insert themselves into structure
• No manual configuration or oversight

• Flexible: nodes can be
• Widely distributed or colocated
• Powerful hosts or low-end PCs

• Each peer brings a little bit to the dance
• Aggregate is equivalent to a big distributed server farm behind a fat network

pipe

General Abstraction?

• Big challenge for P2P: finding content
• Many machines, must find one that holds data

• Essential task: lookup(key)
• Given key, find host that has data (“value”) corresponding to that key

Overview

• Basics
• Historical P2P
• Napster
• Gnutella
• KaZaA

• Distributed hash tables
• Basics
• Chord
• BitTorrent

12

Q: How to share efficiently
search for and share files
between peers?

Locating the Relevant Peers

• Three main approaches
• Central directory (e.g., Napster)
• Query flooding (e.g., Gnutella)
• Hierarchical overlay (e.g., Kazaa, modern Gnutella)
• Distributed hash table (e.g., BitTorrent)

• Design goals
• Scalability
• Simplicity
• Robustness
• Plausible deniability

13

Peer-to-Peer Networks: Napster

• Napster history: the rise
• 1/99: Napster version 1.0
• 5/99: company founded
• 12/99: first lawsuits
• 2000: 80 million users

• Napster history: the fall
• Mid 2001: out of business due to

lawsuits
• Mid 2001: dozens of decentralized

P2P alternatives
• 2003: growth of pay services like

iTunes

14
Shawn Fanning,

Northeastern freshman

Napster Directory Service

• Client contacts Napster (via TCP)
• Provides a list of music files it will share
• … and Napsterʼs central server updates the directory

• Client searches on a title or performer
• Napster identifies online clients with the file
• … and provides their IP addresses

• Client requests the file from the chosen supplier
• Supplier transmits the file to the client
• Both client and supplier report status to Napster

15

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

Napster Properties

• Serverʼs directory continually updated
• Always know what music is currently available
• Point of vulnerability for legal action

• Peer-to-peer file transfer
• No load on the server
• Plausible deniability for legal action (but not enough)

• Bandwidth
• Suppliers ranked by apparent bandwidth and response time

17

Napster: Limitations of Directory

• File transfer is decentralized, but locating content is highly centralized
• Single point of failure
• Performance bottleneck
• Copyright infringement

• So, later P2P systems were more distributed
• Gnutella went to the other extreme…

18

Peer-to-Peer Networks: Gnutella

• Gnutella history
• 2000: J. Frankel &

T. Pepper released Gnutella
• Soon after: many other clients

(e.g., Morpheus, Limewire,
Bearshare)
• 2001: protocol enhancements,

e.g., “ultrapeers”

• Query flooding
• Join: contact a few nodes to

become neighbors
• Publish: no need!
• Search: ask neighbors, who ask

their neighbors
• Fetch: get file directly from

another node

19

Gnutella: Search by Flooding

xyz.mp3 ?
xyz.mp3

Flooding

20

search

Gnutella: Search by Flooding

xyz.mp3 ?
xyz.mp3

Flooding

21

search

Gnutella: Search by Flooding

transfer

22

Gnutella: Pros and Cons

• Advantages
• Fully decentralized
• Search cost distributed
• Processing per node permits powerful search semantics

• Disadvantages
• Search scope may be quite large
• Search time may be quite long
• High overhead, and nodes come and go often

23

Peer-to-Peer Networks: KaZaA

• KaZaA history
• 2001: created by Dutch company

(Kazaa BV)
• Single network called FastTrack

used by other clients as well

• Eventually protocol changed so
others could no longer use it

• Super-node hierarchy
“not all peers are created equal”
• Join: on start, the client contacts a

super-node

• Publish: client sends list of files to
its super-node
• Search: queries flooded among

super-nodes
• Fetch: get file directly from one or

more peers

24

24

“Ultra/super peers” in
KaZaA and later Gnutella

25

KaZaA: Why Super-Nodes?

• Query consolidation
• Many connected nodes may have only a few files
• Propagating query to a sub-node may take more time than for the super-node

to answer itself

• Stability
• Super-node selection favors nodes with high up-time
• How long you’ve been on is a good predictor of how long you’ll be around in

the future

26

Overview

• Basics
• Historical P2P
• Napster
• Gnutella
• KaZaA

• Distributed hash tables
• Basics
• Chord
• BitTorrent

27

Q: How to share efficiently
search for and share files
between peers?

Peer-to-Peer Networks: BitTorrent

• BitTorrent history
• 2002: B. Cohen debuted BitTorrent

• Emphasis on efficient fetching, not searching
• Distribute same file to many peers
• Single publisher, many downloaders

• Preventing free-loading
• Incentives for peers to contribute

28

BitTorrent: Tracker

• Infrastructure node
• Keeps track of peers participating in the torrent
• Peers register with the tracker when it arrives

• Tracker selects peers for downloading
• Returns a random set of peer IP addresses
• So the new peer knows who to contact for data

• Can also have “trackerless” system
• Using distributed hash tables (DHTs)

29

Key Value
John Washington 132-54-3570
Diana Louise Jones 761-55-3791
Xiaoming Liu 385-41-0902
Rakesh Gopal 441-89-1956
Linda Cohen 217-66-5609
……. ………
Lisa Kobayashi 177-23-0199

Simple database with (key, value) pairs:
• key: human name; value: social security #

Simple Database

• key: movie title; value: IP addresses of clients
who have the content

Original Key Key Value
John Washington 8962458 132-54-3570
Diana Louise Jones 7800356 761-55-3791
Xiaoming Liu 1567109 385-41-0902
Rakesh Gopal 2360012 441-89-1956
Linda Cohen 5430938 217-66-5609
……. ………
Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on
numerical representation of key
• key = hash(original key)

Hash Table

Distributed Hash Table (DHT)

• Distribute (key, value) pairs over millions of peers
• pairs are evenly distributed over peers

• Any peer can query database with a key
• database returns value for the key
• To resolve query, small number of messages exchanged among peers

• Each peer only knows about a small number of other peers
• Robust to peers coming and going (churn)

Assign key-value pairs to peers

• rule: assign key-value pair to the peer that has the closest ID
• convention: closest is the immediate successor of the key
• e.g., ID space {0,1,2,3,…,63}
• suppose 8 peers: 1,12,13,25,32,40,48,60
• If key = 51, then assigned to peer 60
• If key = 60, then assigned to peer 60
• If key = 61, then assigned to peer 1

1

12

13

25

32
40

48

60

Circular DHT

• each peer only aware of
immediate successor and
predecessor.

Overlay onto real network

1

12

13

25

3240

48

60

What is the value
associated with key 53 ?

value

Resolving a query

Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor,
successor, short cuts.
• reduced from 6 to 3 messages.
• possible to design shortcuts with O(log N) neighbors, O(log N)

messages in query

1

12

13

25

32
40

48

60

What is the value for
key 53value

Chord: Fast routing with a small routing table

• Each nodeʼs routing table lists
nodes:
• ½ way around circle
• ¼ way around circle
• …
• next around circle

• The table is small:
• At most log N entries

Chord: Lookups take O(log N) hops

• Every step reduces the
remaining distance to the
destination by at least a factor
of 2

Node N32 looks up key K19

• Lookups are fast:
• At most O(log N) steps
• Can be made even faster in

practice

Chord Joining: linked list insert

N36

N40

N25

1. Lookup(36)
K30
K38

Chord Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

Chord Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

Chord Join (4)
[Done later, in stabilization]

N36

N40

N25

4. Set N25’s successor
pointer

Update other routing entries in the background
Correct successors produce correct lookups

K30
K38

K30

Peer churn
1

3

4

5

8
10

12

15

handling peer churn:
vpeers may come and go (churn)
veach peer knows address of its
two successors
veach peer periodically pings its
two successors to check aliveness
vif immediate successor leaves,
choose next successor as new
immediate successor

example: peer 5 abruptly leaves
•peer 4 detects peer 5ʼs departure; makes 8 its immediate
successor
• 4 asks 8 who its immediate successor is; makes 8ʼs
immediate successor its second successor.

Overview

• Basics
• Historical P2P
• Napster
• Gnutella
• Kazaa

• Distributed hash tables
• Basics
• Chord
• BitTorrent

44

Q: How to share efficiently
search for and share files
between peers?

BitTorrent: Chunk Request Order

• Which chunks to request?
• Could download in order
• Like an HTTP client does

• Problem: many peers have the early chunks
• Peers have little to share with each other
• Limiting the scalability of the system

• Problem: eventually nobody has rare chunks
• E.g., the chunks need the end of the file
• Limiting the ability to complete a download

• Possible solutions: random selection, rarest first

45

BitTorrent: Rarest Chunk First

• Which chunks to request first?
• Chunk with fewest available copies (i.e., rarest chunk)

• Benefits to the peer
• Avoid starvation when some peers depart

• Benefits to the system
• Avoid starvation across all peers wanting a file
• Balance load by equalizing # of copies of chunks

46

Free-Riding in P2P Networks

• Vast majority of users are free-riders
• Most share no files and answer no queries
• Others limit # of connections or upload speed

• A few “peers” essentially act as servers
• A few individuals contributing to the public good
• Making them hubs that basically act as a server

• BitTorrent prevents free riding
• Allow the fastest peers to download from you
• Occasionally let some free loaders download

47

Bit-Torrent: Preventing Free-Riding

• Peer has limited upload bandwidth
• And must share it among multiple peers
• Tit-for-tat: favor neighbors uploading at highest rate

• Rewarding the top four neighbors
• Measure download bit rates from each neighbor
• Reciprocate by sending to the top four peers

• Optimistic unchoking
• Randomly try a new neighbor every 30 seconds
• So new neighbor has a chance to be a better partner

48

2-49

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers
(3) Bob reciprocates; Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster!

BitTyrant: Gaming BitTorrent

• BitTorrent can be gamed, too
• Peer uploads to top N peers at rate 1/N
• E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
• … peer uploading at rate 9 gets treated quite well

• Best to be the Nth peer in the list, rather than 1st
• Offer just a bit more bandwidth than low-rate peers
• And you’ll still be treated well by others

• BitTyrant
• Uploads at higher rates to higher-bandwidth peers

50

Lessons and Limitations

• Client-Server performs well
• But not always feasible: Performance not often key issue!

• For the following, you should choose a system thatʼs:
(A) Flood-based (B) DHT-based (C) Either (D) None

• Scalability
• Decentralization of visibility and liability
• Finding popular stuff
• Finding unpopular stuff
• Local queries
• Performance guarantees

51

Lessons and Limitations

• Client-Server performs well
• But not always feasible: Performance not often key issue!

• For the following, you should choose a system thatʼs:
(A) Flood-based (B) DHT-based (C) Either (D) None

• Scalability B
• Decentralization of visibility and liability C
• Finding popular stuff A (C?)
• Finding unpopular stuff B
• Local queries A
• Performance guarantees B

52

References

• Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for
internet applications. ACM SIGCOMM 2001.
• Mohammad Alizadeh, MIT

• Computer Networking: A Top-Down Approach (6th ed), James Kurose
and Keith Ross, 2011.

53

