Peer-to-Peer (P2P)

CS204: Advanced Computer Networks

Oct 11, 2023
Adapted from Jiasi’s CS 204 slides for Spring 23

Overview

e Basics

* Historical P2P
* Napster

 Gnutella
* KaZaA

e Distributed hash tables

* Basics
e Chord
e BitTorrent

Q: How to share efficiently
search for and share files
between peers?

Pure P2P architecture

* no always-on server |

e arbitrary end systems Q
directly communicate

* peers are intermittently
connected and change IP Q" l
addresses : :
examples:
* file distribution g
(BitTorrent) S S

* Streaming g B
 \VoIP (original Skype)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one serverto N
peers?
* peer upload/download capacity is limited resource

Us: server
uploaii capacity

di: peer i
download
capacity

di/
network (with abundant Pg
bandwidth) ,\

ui: peer i upload
capacity

File distributi@ time: client-server

* server transmission: must
sequentially send (upload) N g ‘g
file copies:

- time to send one copy: F/Us N/ *\E-
S i

- time to send N copies: NF/us

% client: each client must

download file copy
" dmin = min client download rate
= min client download time: F/dmin

time to distribute F
to N clients using D... 2 max{NF/US,F/dmin}

client-server approach

Increases linearly in N

File distribution time: P2P

e server transmission: must g /V/
upload at least one copy

- time to send one copy: F/us
< client: each client must

download file copy .g *g

= min client download time: F/dmin

« clients: as aggregate must download NF bits
= max upload rate (limiting max download rate) is us + 2ui

time to distribute F

to N clients using D)., > max{F/us, , F/h, , NF/(us + Zui)}

P2P approach

Increases linearly in N ...
... but so does this, as each peer brings service capacity

Client-server vs. P2P: example

—

client upload rate = u, F/u=1hour, us = 10u, dmin 2 Us

3.5
) = P2P
£ 3 —-o— Client-Server
|_
_S 2.5
=
Q 2
@
O 1.5
=
g
£
s 0.5

0

0 5 10 15 20 25 30 35

2-7

P2P file distribution

+» file divided into 256Kb chunks (for example)
¢ peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file

w \
- X
x4 e
Alice arrives ...
... obtains list

of peers from tracker v
... and begins exchanging ™=

file chunks with peers in torrent Lj u
—

d

C

e

2-8

P2P file distribution

* peer joining torrent:

* has no chunks, but will
accumulate them over time
from other peers

* registers with tracker to get list

of peers, connects to subset of
peers (“neighbors”)

)
‘0

L)

while downloading, peer uploads chunks to other peers
peer may change peers with whom it exchanges chunks
churn: peers may come and go

once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

3

%

X3

*

XS

%

2-9

What can P2P teach us about infrastructure
design?

e Resistant to DoS and failures
 Safety in numbers, no single point of failure

* Self-assembling
* Nodes insert themselves into structure
* No manual configuration or oversight

* Flexible: nodes can be
* Widely distributed or colocated
e Powerful hosts or low-end PCs
* Each peer brings a little bit to the dance

* Aggregate is equivalent to a big distributed server farm behind a fat network
pIpe

General Abstraction?

* Big challenge for P2P: finding content
* Many machines, must find one that holds data

* Essential task: lookup(key)
* Given key, find host that has data (“value”) corresponding to that key

Overview

e Basics

* Historical P2P
* Napster

 Gnutella
* KaZaA

e Distributed hash tables

e Basics
e Chord
e BitTorrent

Q: How to share efficiently
search for and share files
between peers?

12

Locating the Relevant Peers

* Three main approaches

* Central directory (e.g., Napster)
* Query flooding (e.g., Gnutella)

 Hierarchical overlay (e.g., Kazaa, modern Gnutella)
* Distributed hash table (e.g., BitTorrent)

* Design goals
* Scalability
* Simplicity
* Robustness
* Plausible deniability

13

Peer-to-Peer Networks: Napster

e Napster history: the rise
* 1/99: Napster version 1.0
* 5/99: company founded

e 12/99: first lawsuits
e 2000: 80 million users

Shawn Fanning,
Northeastern freshman

* Napster history: the fall

* Mid 2001: out of business due to
lawsuits

 Mid 2001: dozens of decentralized
P2P alternatives

* 2003: growth of pay services like
iTunes

14

Napster Directory Service

* Client contacts Napster (via TCP)

* Provides a list of music files it will share
* ... and Napster's central server updates the directory

* Client searches on a title or performer
* Napster identifies online clients with the file
e ... and provides their IP addresses

* Client requests the file from the chosen supplier

» Supplier transmits the file to the client
* Both client and supplier report status to Napster

15

Napster: Example

Napster Properties

* Server’s directory continually updated

* Always know what music is currently available
* Point of vulnerability for legal action

* Peer-to-peer file transfer
* No load on the server

 Plausible deniability for legal action (but not enough)

 Bandwidth

 Suppliers ranked by apparent bandwidth and response time

17

Napster: Limitations of Directory

* File transfer is decentralized, but locating content is highly centralized

* Single point of failure
* Performance bottleneck

* Copyright infringement

* So, later P2P systems were more distributed
* Gnutella went to the other extreme...

18

Peer-to-Peer Networks: Gnutella

* Gnutella history * Query flooding

* 2000: J. Frankel & * Join: contact a few nodes to
T. Pepper released Gnutella become neighbors

e Soon after: many other clients * Publish: no need!
(e.g., Morpheus, Limewire, * Search: ask neighbors, who ask
Bearshare) their neighbors

* 2001: protocol enhancements, * Fetch: get file directly from
e.g., ultrapeers another node

19

Gnutella: Search by Flooding

NG L
-7 ¥
\ earch
__J f] ?xyz.mp3 ?

e

| . Flooding

pA—

Gnutella: Search by Flooding

Qﬁ Xyz.mp3 ?

7

Flooding

”‘Q_

Gnutella: Search by Flooding
NG L

- /@CZ_#-\-’Q

i E/ﬁ

=

pA—

Gnutella: Pros and Cons

* Advantages

* Fully decentralized
e Search cost distributed

* Processing per node permits powerful search semantics

* Disadvantages

e Search scope may be quite large
e Search time may be quite long
* High overhead, and nodes come and go often

23

24

Peer-to-Peer Networks: KaZaA

* KaZaA history

e 2001: created by Dutch company

(Kazaa BV)

* Single network called FastTrack
used by other clients as well

* Eventually protocol changed so
others could no longer use it

 Super-node hierarchy
“not all peers are created equal”

* Join: on start, the client contacts a
super-node

e Publish: client sends list of files to
its super-node

e Search: queries flooded among
super-nodes

* Fetch: get file directly from one or
more peers

24

“Ultra/super peers’ in
KaZaA and later Gnutella

25

KaZaA: Why Super-Nodes?

* Query consolidation

* Many connected nodes may have only a few files

* Propagating query to a sub-node may take more time than for the super-node
to answer itself

e Stability
* Super-node selection favors nodes with high up-time

* How long you’ve been on is a good predictor of how long you'll be around in
the future

26

Overview

e Basics

* Historical P2P
* Napster

 Gnutella
e KaZaA

e Distributed hash tables

* Basics
* Chord
e BitTorrent

Q: How to share efficiently
search for and share files
between peers?

27

Peer-to-Peer Networks: BitTorrent

* BitTorrent history
e 2002: B. Cohen debuted BitTorrent

* Emphasis on efficient fetching, not searching

* Distribute same file to many peers
* Single publisher, many downloaders

* Preventing free-loading
* Incentives for peers to contribute

(e BitTorrent

—— 'A

28

BitTorrent: Tracker

e Infrastructure node

» Keeps track of peers participating in the torrent
* Peers register with the tracker when it arrives

* Tracker selects peers for downloading
* Returns a random set of peer IP addresses

* So the new peer knows who to contact for data

* Can also have “trackerless” system
 Using distributed hash tables (DHTSs)

29

Simple Database

h

Simple database with (key, value) pairs:
* key: human name; value: social security #

John Washington 132-54-3570
Diana Louise Jones 761-55-3791
Xiaoming Liu 385-41-0902
Rakesh Gopal 441-89-1956
Linda Cohen 217-66-5609
Lisa Kobayashi 177-23-0199

* key: movie title; value: IP addresses of clients
who have the content

Hash Table

* More convenient to store and search on
numerical representation of key
* key = hash(original key)

Original Key

John Washington 8962458 132-54-3570
Diana Louise Jones 7800356 761-55-3791
Xiaoming Liu 1567109 385-41-0902
Rakesh Gopal 2360012 441-89-1956
Linda Cohen 5430938 217-66-5609

Lisa Kobayashi 9290124 177-23-0199

Distributed Hash Table (DHT)

* Distribute (key, value) pairs over millions of peers
* pairs are evenly distributed over peers

* Any peer can query database with a key

 database returns value for the key
* To resolve query, small number of messages exchanged among peers

* Each peer only knows about a small number of other peers
* Robust to peers coming and going (churn)

Assign key-value pairs to peers

* rule: assign key-value pair to the peer that has the closest ID

* convention: closest is the immediate successor of the key
e e.g., IDspace {0,1,2,3,...,63}
* suppose 8 peers: 1,12,13,25,32,40,48,60

* If key =51, then assigned to peer 60

* If key = 60, then assigned to peer 60
* If key = 61, then assigned to peer 1

Circular DHT

a

e each peer only aware of

immediate successor and
predecessor.

1

60 12
13
48
25
40

32

Overlay onto real network

Resolving a query

What is the value
1 associated with key 53 ?

32

Circular DHT with shortcuts B

e each peer keeps track of IP addresses of predecessor,
successor, short cuts.

* reduced from 6 to 3 messages.

 possible to design shortcuts with Oflog N) neighbors, O(log N)
messages in query

Chord: Fast routing with a small routing table

* Each node’s routing table lists

nodes:
5 way around circle
* Y way around circle

* next around circle

* The table is small:
* At most log N entries

Chord: Lookups take O(log N) hops

* Every step reduces the

remaining distance to the N5
: : N110 N10 K19
destination by at least a factor s p—
of 2 Va4 “» N20
N99 e
v, N32
 Lookups are fast: N0
o At most O(log N) steps N60
« Can be made even faster in
practice

Node looks up key K19

Chord Joining: linked list insert

1. Lookup(36)

Chord Join (2)

2. N36 sets its own

successor pointer

Chord Join (3)

3. Copy keys 26..36

from N40 to N36

Chord Join (4)
[Done later, in stabilization]

4. Set N25’ s successor
pointer

Update other routing entries in the background
Correct successors produce correct lookups

Peer churn

- handling peer churn:

«peers may come and go (churn)
+each peer knows address of its
3 two successors
«each peer periodically pings its
two successors to check aliveness
4 »if immediate successor leaves,

12 choose next successor as new
5 immediate successor

15

example: peer 5 abruptly leaves

*peer 4 detects peer 5's departure; makes 8 its immediate
successor

* 4 asks 8 who its immediate successor is; makes 8's
immediate successor its second successor.

Overview

e Basics

* Historical P2P
* Napster

 Gnutella
e Kazaa

e Distributed hash tables

e Basics
e Chord
e BitTorrent

Q: How to share efficiently
search for and share files
between peers?

44

BitTorrent: Chunk Request Order

Which chunks to request?

e Could download in order
e Like an HTTP client does

Problem: many peers have the early chunks

 Peers have little to share with each other
e Limiting the scalability of the system

Problem: eventually nobody has rare chunks

 E.g., the chunks need the end of the file
e Limiting the ability to complete a download

Possible solutions: random selection, rarest first

45

BitTorrent: Rarest Chunk First

* Which chunks to request first?
* Chunk with fewest available copies (i.e., rarest chunk)

* Benefits to the peer
* Avoid starvation when some peers depart

* Benefits to the system
 Avoid starvation across all peers wanting a file
* Balance load by equalizing # of copies of chunks

46

Free-Riding in P2P Networks

* Vast majority of users are free-riders

* Most share no files and answer no queries
* Others limit # of connections or upload speed

* A few “peers’ essentially act as servers
* A few individuals contributing to the public good
* Making them hubs that basically act as a server

* BitTorrent prevents free riding

* Allow the fastest peers to download from you
e Occasionally let some free loaders download

47

Bit-Torrent: Preventing Free-Riding

* Peer has limited upload bandwidth

* And must share it among multiple peers
* Tit-for-tat: favor neighbors uploading at highest rate

* Rewarding the top four neighbors
* Measure download bit rates from each neighbor
* Reciprocate by sending to the top four peers

* Optimistic unchoking
e Randomly try a new neighbor every 30 seconds
* So new neighbor has a chance to be a better partner

48

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers
(3) Bob reciprocates; Bob becomes one of Alice’ s top-four providers

2-49

BitTyrant: Gaming BitTorrent

* BitTorrent can be gamed, too

* Peer uploads to top N peers at rate 1/N
* E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
* ... peer uploading at rate 9 gets treated quite well

* Best to be the Nth peer in the list, rather than 1st

 Offer just a bit more bandwidth than low-rate peers
* And you'll still be treated well by others

* BitTyrant
* Uploads at higher rates to higher-bandwidth peers

50

Lessons and Limitations

* Client-Server performs well
* But not always feasible: Performance not often key issue!

* For the following, you should choose a system that’s:
(A) Flood-based (B) DHT-based (C) Either (D) None

Scalability
Decentralization of visibility and liability

Finding popular stuff
Finding unpopular stuff

* Local queries
e Performance guarantees

51

Lessons and Limitations

* Client-Server performs well
* But not always feasible: Performance not often key issue!

* For the following, you should choose a system that’s:
(A) Flood-based (B) DHT-based (C) Either (D) None

Scalability B

Decentralization of visibility and liability C
Finding popular stuff A (C?)

Finding unpopular stuff B

* Local queries A
* Performance guarantees B

52

References

* lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for
internet applications. ACM SIGCOMM 2001.

 Mohammad Alizadeh, MIT

e Computer Networking: A Top-Down Approach (6t ed), James Kurose
and Keith Ross, 2011.

53

