
Transport Layer: MPTCP
CS 204: Advanced Computer Networks

Oct 16, 2023
Adapted from Jiasi’s CS 204 slides for Spring 23

1

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP
• CUBIC
• BBR

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

2

Holding the Internet Together

• Distributed cooperation for resource allocation
• BGP: what end-to-end paths to take (for ~60K ASes)
• TCP: what rate to send over each path (for ~3B hosts)

3

AS 1

AS 2

AS 3

AS 4

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

vno explicit feedback
from network

vcongestion inferred
from end-system
observed loss, delay

vapproach taken by TCP

network-assisted
congestion control:

vrouters provide
feedback to end systems
§single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

§explicit rate for sender
to send at

4

TCP seq. numbers, ACKs

sequence numbers:
• byte stream “number” of

first byte in segment’s
data

acknowledgements:
• seq # of next byte

expected from other side
• cumulative ACK

Q: how receiver handles out-
of-order segments
• A: TCP spec doesn’t say, -

up to implementor
source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

5

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

6

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

7

Congestion in Drop-Tail FIFO Queue

• Access to the bandwidth: first-in first-out queue
• Packets transmitted in the order they arrive

• Access to the buffer space: drop-tail queuing
–If the queue is full, drop the incoming packet

✗

How it Looks to the End Host

• Delay: Packet experiences high delay
• Loss: Packet gets dropped along path

• How can TCP sender learn this?
• Delay: Round-trip time estimate
• Loss: Timeout and/or duplicate acknowledgments
• Mark: Packets marked by routers with large queues

✗

TCP Congestion Window

• Each sender maintains congestion window
• Max number of bytes to have in transit (not ACK’d)

• Adapting the congestion window
• Decrease upon losing a packet: backing off
• Increase upon success: optimistically exploring
• Always struggling to find right transfer rate

• Tradeoff
• Pro: avoids needing explicit network feedback
• Con: continually under- and over-shoots “right” rate

Packet loss

Time (RTT)

Packet loss Packet loss
cwnd

Slow
Start

Packet loss TCP

TCP Congestion Control

• Two parts in TCP congestion control
• (1) Congestion Avoidance

• CWND = CWND + 1/CWND (for each ACK)
• (2) Slow Start

• CWND = CWND + 1 (for each ACK)

11

Congestion
Avoidance

Congestion
Avoidance

Congestion
Avoidance

TCP Slow Start

vwhen connection begins,
increase rate
exponentially until first
loss event:
§ initially cwnd = 1 MSS
§ double cwnd every RTT
§ done by incrementing
cwnd for every ACK
received

vsummary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

12

TCP Congestion Avoidance

• sender increases transmission rate (window size), probing for usable
bandwidth, until loss occurs

• additive increase: increase cwnd by 1 MSS every RTT until loss detected
• multiplicative decrease: cut cwnd in half after loss

13

cw
nd

:
TC

P
 s

en
de

r
co

ng
es

tio
n

w
in

do
w

 s
iz

e

additively increase window size …
…. until loss occurs (then cut window in half)

time

à AIMD saw tooth behavior: probing for bandwidth
à Much quicker to slow than speed up!

• Over-sized windows (causing loss) are much worse than
under-sized windows (causing lower throughput)

• AIMD: A necessary condition for stability of TCP

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to
1/2 of its value
before timeout.

Implementation:
vvariable ssthresh
von loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

14

Summary: TCP Congestion Control

tim eout

ssthresh = cw nd/2
cw nd = 1 M SS
dupAC Kcount = 0
retransm it m issing segm ent

L

cw nd > ssthresh

congestion
avoidance

cw nd = cw nd + M SS (M SS/cw nd)
dupAC Kcount = 0
transm it new segm ent(s), as a llow ed

new AC K.

dupAC Kcount++

duplicate AC K

fast
recovery

cw nd = cw nd + M SS
transm it new segm ent(s), as a llow ed

duplicate AC K

ssthresh= cw nd/2
cw nd = ssthresh + 3

retransm it m issing segm ent

dupAC Kcount == 3

tim eout

ssthresh = cw nd/2
cw nd = 1
dupAC Kcount = 0
retransm it m issing segm ent

ssthresh= cw nd/2
cw nd = ssthresh + 3
retransm it m issing segm ent

dupAC Kcount == 3cw nd = ssthresh
dupAC Kcount = 0

N ew AC K

slow
start

tim eout

ssthresh = cw nd/2
cw nd = 1 M SS
dupAC Kcount = 0
retransm it m issing segm ent

cw nd = cw nd+M SS
dupAC Kcount = 0
transm it new segm ent(s), as a llow ed

new AC KdupAC Kcount++

duplicate AC K

L

cw nd = 1 M SS
ssthresh = 64 KB
dupAC Kcount = 0

New
ACK!

New
ACK!

New
ACK!

15

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

16

Receiver Window vs. Congestion Window

• Flow control
• Keep a fast sender from overwhelming slow receiver

• Congestion control
• Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
• TCP flow control: receiver window
• TCP congestion control: congestion window
• Sender TCP window =

min { congestion window, receiver window }

TCP Throughput

• Throughput ≤ min(cwnd, rwnd) / RTT

• Desired properties of a TCP congestion control algorithm
• TCP-friendliness

• Only use as much rate as a regular TCP flow would

• RTT-fairness
• Congestion windows only increase with each RTT
• What if one flow with big RTT, one flow with small RTT?

18

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP

• Basics
• Sequence numbers
• Congestion control

• CUBIC
• BBR

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

19

Why have multiple paths?

• Mobile user
• WiFi and cellular at the same time

• High-end servers
• Multiple Ethernet cards

• Data centers
• Rich topologies with many paths

• Benefits of multipath
• Higher throughput
• Failover from one path to another
• Seamless mobility

20

h1 h2

r0

r1

s1

s3

s2

s4

Key Design Goals

• Use the available network paths at least as well as regular TCP, but
without starving TCP

• Usable as regular TCP for existing applications

• Enabling MPTCP must not prevent connectivity on a path where
regular TCP works

21

Working With Unmodified Apps

• Present the same socket API and expectations
• Identified by the “five tuple” (IP address, port #, protocol)

From http://queue.acm.org/detail.cfm?id=2591369

Working With Unmodified Hosts

• Establish the TCP connection in the normal way
• Create a socket to a single remote IP address/port

• And then add more subflows, if possible
23

SYN

SYN ACK

ACK
Data

A B

Data

Each host tells its Initial
Sequence Number (ISN)

to the other host.

Negotiating MPTCP Capability

• How do hosts know they both speak MPTCP?
• During the 3-way SYN/SYN-ACK/ACK handshake

• If SYN-ACK doesn’t contain MP_CAPABLE
• Don’t try to add any subflows!

Detour: Middleboxes

• In-network services, e.g.,
• Firewall
• Network address translator
• Transparent proxy
• Intrusion detection system

• Interaction with TCP
• Change IP addresses and port numbers
• Change TCP initial sequence number
• Remove TCP options
• Dividing large block of data into smaller packets
• Expect to see all packets of the connection
• Etc.

25

Source: https://en.wikibooks.org/wiki/Communication_Networks/NAT_and_PAT_Protocols

Master Connection Setup: Example

• Use MP-CAPABLE flag to indicate
sender has MPTCP capability

• Problem: Middleboxes remove
TCP options
• Option removed on msg 1?
• Option removed on msg 2?

• If all goes correctly, add MP-
CAPABLE

26

Host BHost A

SYN, MP-CAPABLE

SYN/ACK, MP-CAPABLE

ACK, MP-CAPABLE

Master Connection Setup: Summary

• What if middleboxes strip the MPTCP_CAPABLE option?
• On the SYN? On the SYN-ACK?

• Include MPTCP_CAPABLE on the ACK of the SYN-ACK?
• What if the ACK is lost?
• Carry on all subsequent packets

• What if the middlebox drops SYN packets with unfamiliar options?
• Sender can retransmit lost SYN without the option
• … and fall back to regular TCP behavior

27

Adding New Subflows

• How to establish new subflows?

• Host A has addresses A1 and A2
• Assume Host B knows these addresses

and starts sending data to both

• Problem: Middleboxes will not allow
data to be sent without SYN
à need 3-way handshake for new
subflows

28

Host B
Host A

SYN, MP-CAPABLE

SYN/ACK, MP-CAPABLE

ACK, MP-CAPABLE

A1 A2

Data

Data

SYN, MP-JOIN

SYN/ACK, MP-JOIN

ACK, MP-JOIN

Adding New Subflows: Challenges

• Network Address Translators (NAT)
• Problem: NAT changes the IP address and port number

1. How to establish new subflows?
• Allow one end-point to tell another about its addresses

2. How to identify which connection the subflow belongs to?
• Using a token established during connection set-up

29

NAT1

NAT2

WiFi

LTE

1. Adding New Subflows: Addresses

How to establish new subflows?

• Implicit address
• Host A directly sends from A-2
• Server B implicitly realizes that host A has 2 addresses

• Using tokens (next slide)

• Explicit address
• Server B tries to initiate a connection to Host A from B-2

• Problem: B-2 can’t reach client because of host A’s NAT
• Solution

• Server sends ADD_ADDR option with B-2’s address
• Then Host A initiates connection to B-2

30

Host A Server B
A-1

A-2

Server BHost A
B-1

B-2

2. Adding New Subflows: Identification

• TCP flows traditionally identified by
<source IP:source port, dest IP:dest port>

• Problem: Middleboxes may change
host A’s source IP

31

Host A Host B

10.0.0.2 à 71.93.165.196

I want to join flow
<10.0.0.2:12345 , 128.112.49.87:80>

Someone wants to join
<71.93.165.196:11111, 128.112.49.87:80>

I don’t know that connection!

NAT

How to identify which connection a subflow belongs to?

2. Adding New Subflows: Identification

• TCP flows traditionally identified by
<source IP:source port, dest IP:dest port>

• Problem: Middleboxes may change
host A’s source IP
à add a token to identify the
connection
• token B = hash(key B)

32

Host B
Host A

SYN, MP-CAPABLE, key A

SYN/ACK, MP-CAPABLE, key B

ACK, MP-CAPABLE

A1 A2

Data

Data

SYN, MP-JOIN, token B

SYN/ACK, MP-JOIN

ACK, MP-JOIN

Adding New Subflows: Summary

• How to associate a new subflow with the connection?
• Use a token generated from original subflow set-up

• How to start using the new subflow?
• Simply start sending packets with new IP/port pairs
• … and associate them with the existing connection

• How could two end-points learn about extra IP addresses for
establishing new subflows?
• One end-point establishes a new subflow, to already-known address(es) at

the other end-point

33

h1 h2

r0

r1

s1

s3

s2

s4

Subflow 1

Subflow 2

Adding New Subflows: Authentication

• Problem: attacker could use the
same token
à authentication using HMAC

34

Host B
Host A

SYN, MP-CAPABLE, key A

SYN/ACK, MP-CAPABLE, key B

ACK, MP-CAPABLE

A1 A2

Data

Data

SYN, MP-JOIN, token B

SYN/ACK, MP-JOIN

ACK, MP-JOIN

SYN, MP-JOIN, token B

Hash-based Message Authentication Code
(HMAC)

35Source: http://www.networkworld.com/article/2268575/lan-wan/chapter-2--ssl-vpn-technology.html

Adding New Subflows: Authentication

• Problem: attacker could use the
same token
à authentication using HMAC
• HMAC A = f(key A, key B , rand B)
• HMAC B = f(key A, key B , rand A)
• Attacker gets one chance to guess the

HMAC, otherwise rand changes

36

Host B
Host A

SYN, MP-CAPABLE, key A

SYN/ACK, MP-CAPABLE, key B

ACK, MP-CAPABLE

A1 A2

Data

Data

SYN, MP-JOIN, token B, rand A

SYN/ACK, MP-JOIN, rand B, HMAC B

ACK, MP-JOIN, HMAC A

SYN, MP-JOIN, HMAC A

Adding New Subflows: Security Summary

• Security
• Malicious parties creating subflows
• To hijack (part of) the connection

• How to bootstrap security?
• Include a random key during connection set-up
• … and use it to verify authenticity of new subflows

• How to identify the connection on new subflows?
• A token generated from the key

• How to authenticate the addition of subflows?
• Exchanging nonces and computing message authentication codes using the

keys

37

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP

• Basics
• Sequence numbers
• Congestion control

• CUBIC
• BBR

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

38

Sequence Numbers

• Per-flow or per-subflow sequence #s?
• Naïve: Use one sequence of numbers, send a subset of those

numbers on each subflow

• Problem: middleboxes re-initialize sequence numbers
• Problem: middleboxes don’t like gaps in sequence numbers

39

934 935 936 937 938 939 940 941 942 943 Host A1
Host A2

à use flow-level sequence numbers ALONG WITH per-subflow sequence
numbers

Sequence Numbers: ACKs

• Flow-level sequence numbers needed
• Are flow-level ACKs needed? Can we infer them from subflow ACKs?
• Examples below: no flow level ACK, receive buffer size 2

41à use flow-level ACKs along with per-subflow ACKs

Subflow Sequence Numbers: Where to
encode?
• Naïve solution: Encode in data payload
• Problem: Data ACKs can get stuck from flow control

42à Encode data sequence numbers and ACKs in TCP options

Server won’t read until finished sending
(needs to receive ACK to finish sending)
Client can’t ACK until S reads

Source: [3]

Sequence Numbers: Mapping
• Mapping from subflow sequence number to flow sequence number

• Naïve: On each packet, record absolute value of corresponding flow sequence number

• TCP segmentation offload (TSO)
• Divide large segments into smaller chunks
• Performed by NICs to save CPU resources

• Problem: TSO copies same flow sequence number onto multiple packets
à Solution: record initial offset of subflow sequence number to flow sequence number
• Doesn’t matter if this number is copied to multiple packets

43

Retransmissions

• What if data on a subflow times out?
• Can resend on a different subflow

• Still need to retransmit on the original subflow
• No holes in subflow sequence numbers for middlebox compatibility
• Wastes bandwidth

• Protocol not defined by RFC
• Aggressive: Re-transmit every packet not received on a different subflow
• Conservative: Re-transmit after fixed number of retries on the original

subflow

44

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP

• Basics
• Sequence numbers
• Congestion control

• CUBIC
• BBR

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

48

Goal #1: Fairness at Shared Bottlenecks

To be fair, Multipath TCP should take as much capacity as TCP at a
bottleneck link, no matter how many paths it is using.

49

A multipath TCP
flow with two

subflows

Regular TCP

Congestion Control

• Naïve: use TCP congestion control separately on each path
• Problem: Not TCP-friendly

50

For example:
2 clients
Client A has 2 MPTCP subflows
Client B is regular TCP

How much will client A receive?

Source: [2]

Congestion Control

• Solution: Congestion control coupled across subflows
• Many proposed MPTCP algorithms

51
Source: [2]

• OLIA = new MPTCP
congestion control

• Reno = using regular RENO
on each MPTCP subflow

Goal #2: Use Efficient Paths

Each flow has a choice of a 1-hop and a 2-hop path.
How should it split its traffic?

52

12Mb/s

12Mb/s
12Mb/s

Flow 1

Flow 2

Flow 3

Use Efficient Paths

53

If each flow split its traffic 1:1 ...

8Mb/s

8Mb/s

8Mb/s
12Mb/
s

Flow 1

Flow 2

Flow 3

12Mb/s

12Mb/s
12Mb/s

Use Efficient Paths

54

If each flow split its traffic 2:1 ...

9Mb/s

9Mb/s

9Mb/s

Flow 1

Flow 2

Flow 3

12Mb/s

12Mb/s
12Mb/s

Use Efficient Paths

55

Better: Each connection on a one-hop path
Each connection should send all traffic on the least-congested
paths

12Mb/s

12Mb/s

12Mb/s

12Mb/s

12Mb/s

12Mb/s

Use Efficient Paths

56

Better: Each connection on a one-hop path
Each connection should send all traffic on the least-congested
paths
But keep some traffic on the alternate paths as a probe

12Mb/s

12Mb/s

12Mb/s

12Mb/s

12Mb/s

12Mb/s

Use Efficient Paths

• Least-congested paths may not be best!

• Due to differences in round-trip time

• Example

• Two paths

• WiFi: high loss, low RTT

• Cellular: low loss, high RTT

• Using the least-congested path

• Choose the cellular path, due to low loss

• But, the RTT is high

• So throughput is low!

• Thinking: Need a more rigorous way of adapting subflow rates...

57

Goal #3: Be Fair Compared to TCP

• To be fair, Multipath TCP should give a connection at least as much
throughput as it would get with a single-path TCP on the best of its
paths.
• Ensure incentive for deploying MPTCP

• An Multipath TCP flow should take no more capacity on any path (or
collection of paths) than if it was a single-path TCP flow using the best
of those paths.
• Do no harm!

58

wr: cwnd of path r
RTTr: round-trip time of path r
R: set of all paths
S: subset of all paths
wTCPr: cwnd of single-path TCP

Achieving These Goals

• Regular TCP

• Maintain a congestion window w

• On an ACK, increase by 1/w (increase 1 per window)

• On a loss, decrease by w/2

• MPTCP
• Maintain a congestion window per path wr

• On an ACK on path r, increase wr

• On a loss on path r, decrease by wr/2

• How much to increase wr on an ACK?

• If r is the only path at that bottleneck, increase by 1/wr

• Otherwise...?

59

If Multiple Paths Share Bottleneck?

• Recall Goal #3: Don’t take any more bandwidth on a link than the best of

the TCP paths would

• But, where might the bottlenecks be?

• Multiple paths might share the same bottleneck

• So, consider all possible subsets of the paths

• Set R of paths used by a given MPTCP flow

• Subset S of R that includes path r

• E.g., consider r = path 3

• Suppose paths 1, 3, and 4 share a bottleneck

• … but, path 2 does not

• Then, we care about S = {1,3,4}

60

Achieving These Goals

• What is the best of these subflows achieving?
• Path s is achieving throughput of ws/RTTs

• So best path is getting maxs(ws/RTTs)

• What total bandwidth are these subflows getting?
• Across all subflows sharing that bottleneck
• Sum over s in S of ws/RTTs

• Consider the ratio of the two
• And pick the results for the subset S with min ratio

• There is some subset S where the best subflow is not doing that great (numerator small)
à extra capacity for r

• Many subflows are sharing the bottleneck (denominator large)
à less capacity for r

61

wr: cwnd of path r
RTTr: round-trip time of path r
R: set of all paths
S: subset of all paths
wTCPr: cwnd of single-path TCP

Scheduling

• When there is space in the congestion and receive windows, which
subflow to transmit on?
• Round-robin
• Lowest-RTT first

• Issue: congestion window is ACK-clocked
• Round-robin: if cwnd has space, send even if out of round-robin order?
• Lowest-RTT first: if cwnd has space, send on higher-RTT subflow?

62

Use of Multipath TCP in iOS 7

• Multipath TCP since iOS 7 (fall 2013)
• Primary TCP connection over WiFi
• Backup TCP connection over cellular data

• Failover
• If WiFi becomes unavailable…
• … iOS 7 will use the cellular data connection

• For destinations controlled by Apple
• E.g., Siri

• See https://support.apple.com/en-us/HT201373

63

MPTCP Example in Practice

64
Source: [2]

Sources

1. “Multipath TCP,” Christoph Pasch and Olivier Bonaventure, ACM
Queue, 2014.

2. TCP Extensions for Multipath Operation with Multiple Addresses,
RFC 2684.

3. “How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP,” Raiciu et al., USENIX NSDI 2012.

4. “Design, implementation and evaluation of congestion control for
multipath TCP”, USENIX NSDI 2011.

5. Jennifer Rexford, COS 561

65

