Transport Layer: TCP CUBIC, BBR

CS 204: Advanced Computer Networks

Oct 20, 2023
Adapted from Jiasi’s CS 204 slides for Spring 23

Outline

* TCP Review

* New TCP flavors
* Multipath-TCP

* Basics
e Sequence numbers

* Congestion control

* CUBIC
* BBR

* Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

Who Uses What?

* Mac OS X: CUBIC (default), New Reno

* Windows: Reno (default), CTCP
e Linux: CUBIC (default), Reno

Jc@jc-x1:~5 sysctl net.ipvd.tcp congestion control
net.ipv4.tcp_congestion_control = cubic

Web server OS share

@ Linux
@ Ubuntu
® CentOS

@ Windows
@ FreeBSD
@ Fedora
@ SUSE

TCP Tahoe vs. TCP Reno

e Two similar versions of TCP

e TCP Tahoe (SIGCOMM'’88 paper)
* TCP Reno (1990) Slow-start: cwnd € cwnd + 1

o TCP TahOe * Congestion avoidance: cwnd € cwnd + 1/MSS

* Loss: retransmit, ssthresh €< cwnd/2, go to slow-start
* Always repeat slow start after a loss S & 1l

* Assign slow-start threshold to half of congestion window

* TCP Reno

* Repeat slow start after timeout-based loss
* Divide congestion window in half after triple duplicate ACK

Slow-start: cnwd € cwnd + 1
Congestion avoidance: cwnd € cwnd + 1/MSS
Loss: retransmit, ssthresh € cwnd/2
cwnd € cwnd/2, go to congestion avoidance

Bandwidth-Delay Product

RTT10ms

?%g“gg: %8 155 Mbps * 10 ms = 1550 kb = 104 kB
CU Measure amount of in-flight data
4 BDP = bandwidth * RTT
3 RTT200 ms ’
1\ Oooooooooo
?%55{,;;: %%%8%8%%%% 155 Mbps * 200 ms = 31 Mb = 3875 kB
U OO00000000
‘ UUO OO0 00]

Source: WAN and Application Optimization Technologies, Cisco
http://www.cisco.com/c/en/us/td/docs/nsite/enterprise/wan/wan_optimization/wan_opt_sg/chap06.html 5

Performance Problem — Closer look on
what’s happening inside

* Slow congestion window growth during congestion avoidance

* ATCP connection with 1250-byte packet size and 100ms RTT
running over 10Gbps link.

1.4 hoursy_ s '1 4 hours ' . '1 4 hours ' .

S~ " ;
Packet losg
cwnd 0,000)

Slow start ~ Congestion avoidance Time (RTT)

BIC-TCP
Binary Search with Smax and Smin

Available Bandwidth

Wmax

Congestion window Binary Search with
(cwnd) Smin and Smax
Linear Search +
Wmin time

CUBIC - A new TCP variant

* Why a new protocol?
* While the window growth of new TCP protocols is scalable, their fairness
issue has remained as a major challenge .

e BIC-TCP shows good utilization and stability, but it lacks TCP friendliness and
RTT fairness.

* CUBIC is an enhanced version of BIC
 Simplifies the BIC window control using a cubic function.

* Improves its TCP friendliness & RTT fairness.

* The window growth function of CUBIC is based on real-time (the elapsed time
since the last loss event), so that it is independent of RTT.

CUBIC Main ldea

Window Size

accelerate

Steady State Behavio
M I
I

Wmax ----------I
slow down "
| ' Max probing .
accelerate
Wmin

max

74

cubic
where Cis a scaling factor, tis the elapsed time from the last window
reduction, and Bis a constant multiplication decrease factor.

CUBIC TCP Mode

* [n short RTT networks, the window growth of CUBIC is slower than
TCP since CUBIC is independent of RTT

* Want to ensure that CUBIC is as aggressive as regular TCP

1 Jal+p1
Average sending rate of AIMD = 1 a: additive factor
RTT 'B p B: multiplicative decrease factor

. p: packet loss probability
1 31 (TCP). Thus, a =3x —F

RTT\2 p I+

— IB + 3 'B ! The size of TCP window after time t
Ic/) lm\ 1+ ,3 RTT from window reduction.

it Wip > Weubie @ window size = Wi,

Otherwise - window size = Weubic 10

Outline

* TCP Review
* New TCP flavors
* Multipath-TCP

* CUBIC
* BBR

* Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

11

Contributions

Algorithm

Sigady Stalg Behavior
| accelerate

- = T —

3 Window Size

=

Practical
deployment

12

Experimental Testbed

http://Inetsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing

TCP Sender 1 TCP Receiver 1

Bottleneck
Point

TC

-

. Bottleneck Link

Dummynet
/ Router 1 Dummynet
|~ (Drop Tail) Router 2

i Delay Generato
y t
§/ (Y r r)

Receiver 2

Short and Long-lived RTT for Background Traffic

Short and Long-lived
Traffic Generator 1

Traffic Generator 3

1
(&

Short and Long-lived < .
Traffic Generator 2 Short and Long-lived

Traffic Generator 4

13

Testbed Setup :
Background Traffic Generation

* They use the Internet measurement studies, which have shown complex
behaviors and characteristics of Internet traffic.

* TCP RTTs observed in edge routers
 The exponential mean is set to 66ms (one-way delay), then the CDF is very similar to

the CDF of RTT samples shown in the paper, ”VariabilitK/Iin TCP Round-trip Times” by
J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay in SIGCOMM IMC, 2003.

* Inter-arrival time between two successive TCP connections: Exponential
distribution (observed from Floyd and Paxson).

e Short-lived flows (web traffic flows) follow Lognormal (Body) and Pareto
(Tail) Distribution.

* Using the parameters from the paper “Generating Representative Web Workloads
for Network and Server Performance Evaluation” by Paul Barford, Mark Crovella in

SigMetric 1998.

14

TCP Friendliness

* Dummynet Testbed: 400Mbps, RTT 10ms, 100% router buffer, and

moderate background traffic

cwnd

(packets)

200

450 |
400 F
350 |8
300 |
250 |
200 |
150 |
100 |-

50

' TCP-SACK =

CUBIC =——— -+

TCP-Friendly Region

RAAAHLY O YO

0

!
100

| | | |
200 300 400 500
Time (second)

600

15

RTT Fairness

* Dummynet Testbed: 400Mbps, 1MB buffer size, background traffic

 Flow A with RTT 160ms
* Flow B with RTT 20-160ms

1

Jain’s fairness index x 09 i
SIS 2 o8l CUBIC —— _
" it @ BIC ——
L 07+ = |
= 7 HSTCP —&—
(STCP
0.6 r FAST —e— -
05 | | | | | ISACII(|

0O 20 40 60 80 100 120 140 160 180
RTT (ms)

Link Utilization

* Dummynet Testbed : 400Mbps, 4 high-speed TCP flows, background

traffic, and vary the buffer size from 1MB to 8MB

1

0.95 r
C
S 09
©
N 085
5 08 CUBIC —+— |
= | BIC —%—
5 075 ¢ HTCP —%—
HSTCP —&—
07 i l l | l S-ll-C;I:) |
1 2 3 4 5 6 7

Buffer (MB)

17

Machine Learning for TCP

18

16

-
£

Throughput (Mbps)
e

RemyCC

= with throughput 10x
as important as delay

RemyCC
with equal importance
for throughput and delay

RemyCC

with delay 10x as
important as throughput

1} TCP Cub
mpound TCP
08 -
06 - TCP NewReno
Orcp Vegas

04 1 1 1 1]

x 16 " 4 2 1

Queueing delay (ms)

Shown here medien seslts and 1. olipaes for aipf endponts contending v 2 15 Migs Ink. BTT = 150 ma, esponertialy dhatnbuted fow enge and peuse Brmes

Source: "TCP Ex Machina,” Keith Winstein and Hari Balakrishnan, SIGCOMM 2013.

18

Outline

* TCP Review
* New TCP flavors
* Multipath-TCP

* CUBIC
* BBR

* Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

19

BBR: the story goes back to 2013...

* Many Google services complained about TCP performance

* Internal backbone TCP throughput often < 10 Mbps
* Youtube.com: terrible video quality sometimes, with RTT > 10 s
* Google.com: poor latency in deveoping regions

* Google TCP congestion control was CUBIC (Linux default)

* Packet loss is the sole signal
 Services started to “work around” TCP
* Use parallel connections, tweak TCP knobs, add more network buffers, etc...

20

The problem: Loss-based congestion control

* Loss-based congestion control (Reno, CUBIC)
* Keeps sending until it sees a loss

* But packet loss alone is not a good proxy for congestion

* |f packet loss comes before congestion, loss-based CC gets low tput
* 10 Gbps over 100 ms RTT needs < 0.000003% packet loss (infeasible)
* 1% loss (feasible) over 100 ms RTT gets only 3 Mbps

* |[f loss comes after congestion, loss-based CC bloats buffers, suffers
high delays

21

Network congestion and bottlenecks

Loss-based congestion control in deep buffers

RTT

Loss-based CC (CUBIC / Reno) :

Delivery rate

BDP amount in flight BDP+BufSize .

| 0ss-based congestion control in shallow
ouffers

Multiplicative Decrease
upon random burst losses

RTT

=> Poor utilization

Delivery rate

Loss-based CC (CUBIC / Reno)

BDP BpP+BufSize amountin flight

24

Optimal operating point

RTT

Delivery rate

BDP amount in flight

BDP+BufSize

25

Estimating optimal point (max BW, min RTT)

RTT

Delivery rate

Est max BW = windowed max of BW samples

BOP amount in flight BDP+BufSize 26

The devil is in the details...

Overall goals

1. Pace yourself: Send with rate equal to the estimated bottleneck
bandwidth (BtIBw)

parameter

2. Limit yourself: Total data in flight = bandwidth-delay product
parameter

Sending a packet

function send(packet)

bdp = BtIBwFilter.currentMax x RTpropFilter.currentMin
if}mflight >= cwnd_gain x bdp)
/ wait for ack or retransmission timeout
return
if (now >= nextSendTime)
packet = nextPacketToSend()
if (! packet)
app_limited _until = inflight
return
packet.app_limited = (app_limited until > 0)
packet.sendtime = now
packet.delivered = delivered

packet.delivered_time = delivered_time
ship(packet)

nextSendTime = now + packet.size / (cycle_gain x BtIBwFilter.currentMax)
timerCallbackAt(send, nextSendTime)

29

To see max BW, min RTT: probe both sides of
BDP

we Only |

- min RTTis |
visible
&
g. |) n
- Only
g‘ max BW
is visible

BOP amount in flight BDP+BufSize

30

Estimate RTT, BtIBw: On Receiving an ACK

function onAck(packet)

rtt = now - packet.sendtime A7 e
update_min_filter(RTpropfFilter, rtt)
delivered += packet.size
delivered_time = now
deliveryRate = (delivered - packet.delivered) / (delivered_time -
packet.delivered_time)
if (deliveryRate > BtIBwFilter.currentMax | | ! packet.app_limited)
update_max_filter(BtiBwFilter, deliveryRate
if (app_limited_until > 0)
app_limited _until = app_limited _until - packet.size

Current estimate

31

FIGURE 2: RTT (BLUE), INFLIGHT (GREEN] AND DELIVERY RATE (RED) DETAIL

Probe Example

pipe full so RTT
increases with inflight
(queue created)

RTT [ms)

* Periodically increase
“cycle gain” to probe

* Decrease it after to ,,
clear up queues = g o

inflight (kB)

inflight increases

100]1.00]1.00] 1 '

max BtiBw x cycle gain
used as sending rate

BW (Mbps)

ack arrival adds sample
to BtiBw max filter

4.2
Time [sec.)

TCP Data and ACK Aggregation

 Commonly used for amortizing overheads to increase efficiency

* |In interrupt processing and hardware/software offload mechanisms (TSO)
* |n shared media like WiFi, cellular, cable modems

* ACK aggregation severely limited throughput in initial BBR release

33

Full WiFi trace: receiver

20M
i

™1 trace on TCP receiver
- - Data (mostly) arrives smoothly

- TCP enqueues ACKs smoothly to wifi device
1AM 4 .

- Flat spots are from sender being
- cwnd-limited or rwnd-limited

later slides zoom in here

10M 4
LY
[V / /// } I
M //] .
™~ /
om — ~ - - . v - . LI

M'g
"1 trace on TCP BBR sender
= - Silences in ACK stream cause sender :

to be cwnd-limited or rwnd-limited Feae”
- - Then ACKs arrive aggregated in bursts
- at sender

later slides zoom in here

10M 4
M -
BM
M4
oM L] __]

00 02 04 08 08 10 12 14 . 8 20

/oomed-in WiFi trace: sender

u....ig cwnd exhausted
. trace on TCP BBR sender
16.0M 4

- Sender exhausts cwnd due to
long gap in ACK stream

.
oo
15 a4
.
0w
el burst of aggregated ACKs

148\ 4

14.4M 4

long gap in ACK stream
...causes cwnd exhaustion

14.2M 4

14.0M +

182 154 186 1.58 1.80 162 164 166 168 1.70 172 1.74 e

/oomed-in WiFi trace: receiver

|0.4M:
. trace on TCP receiver
16.0M 4 7
- Big aggregation visible to sender

does not show up here

15.8M 4

15.6M 4
Link underutilized
due to sender
cwnd exhaustion

15.4M 4
152V 4
15.0M 4

148\ 4

- Wifi AP data transmission monopolizing link?
- Data arrival is smooth
- ACK generation is smooth
- ACK transmission (previous slide) paused
- Culprit? Driver? FW? HW? protocol?

14 6M 4

1440 4

14.2M 4

14.0M 4 Time (362)

T T L4 Y T T T T Y Y T T Y
1.5 154 156 158 180 162 164 1,65 168 1.2 172 1.74 178
pretay

37

WIFI RTTS

Wifi

is far from h ‘typ cal"RTT

Wifi TT mplesane isy: e.g.:

RTT
5 %

|

|

- RTT: 4ms to 80ms

W

I

Solution

* Provision cwnd based on degree of ACK aggregation (extra_acked)

extra_acked = excess data ACKed beyond expected amount over this
time interval

= actual acked — estimated BW * time_interval

Cwnd = estimated_BW * min_RTT + max(extra_acked, len=10 RTT)

39

1840
16.2M 4
16.0M +
15.8M <
15.6M <
15.4M 4
15.2M +
15.0M +
14.5M +
14.6M 4
14.4M 4
14.2M +

14.0M 4

BBR aggregation estimator: visualization

: Same zoomed-in sender-side wifi trace
lextra_acked = actual_acked - expected_acked

= actual_acked - estimated_bw*interval

actual acked —»
- <«+—extra_acked

<«+—expected acked

|

interval

Time (sec)

152 168 1.70 1.72 174 1.76

Comparison with TCP CUBIC

FIGURE 4: FIRST SECOND OF A 10-MBPS, 40-MS BBR FLOW

startup

probe BW

//

cwnd_gain clamps

BBRinflight at 3 BDP

exponential to linear
inflight grow

\ CuBIC switcgs from

RTprop

BBR operating
at full BW with
no queue

—\

time [sec.)

41

Lesson learned from developing BBR

* Any algorithm can only work well with clear feedback

* Delay often not reflecting queuing on the Internet
* Loss is flaky if induced by transient burst

 ECN is iffy if routers mark them differently
 Bandwidth is highly dynamic and vulnerable to ACK compression

* The Internet is (and always will be) full of tricks

e AQMs & policers assume TCP always backs off on drops
 Middleboxes delay (or even delete) ACKs for efficiency

* Any congestion control needs continuous refinement to perform well

* Major performance bugs from unexpected places: delayed ACK, sender/receiver
segment offload, socket options, kernel memory management, etc...

42

Outline

* TCP Review
e New TCP flavors
* Multipath-TCP

* CUBIC
* BBR

* Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

44

What Problem Does a Protocol Solve?

* BGP path selection
e Select a path that each AS on the path is willing to use
e Adapt path selection in the presence of failures
 TCP congestion control
* Prevent congestion collapse of the Internet
* Allocate bandwidth fairly and efficiently

* But, can we be more precise?
 Define mathematically what problem is being solved
* To understand the problem and analyze the protocol
* To predict the effects of changes in the system

* To design better protocols from first principles

What Problem is TCP really solving?

Max-min rate allocation?

1 Mb/s

>

Max-min 1/3 1/3 1/3
TCP 1/3 1/3 1/3

Assuming equ
RTTs

What Problem is TCP really solving?

Max-min rate allocation?

1 Mb/s

-I m—

x2="7

x3="7?

1 Mb/s

=)

Max-min

1/2

1/2

1/2

TCP

~0.4

~0.6

~0.6

a7

What Problem is TCP really solving?

1 Mb/s 1 Mb/s 1 Mb/s

. Z -

What is the difference between these links?

X1= "7

xX2="7

48

What Problem is TCP really solving?

49

Network Utility Maximization

Rate control for communication networks: shadow
prices, proportional fairness and stability

FP Kelly, AK Maulloo and DKH Tan
University of Cambridge, UK

This paper analyses the stability and fairness of two classes of rate control algorithm for communication networks, The
algonithms provide natural generalisations to large-scale networks of simple additive increase/multiplicative decrease
schemes, and are shown to be stable about a system optimum characterised by a proportional fairness criterion. Stability
is established by showing that, with an appropriate formulation of the overall optimisation problem, the networks implicit
objective function provides a Lyapunov function for the dynamical system defined by the rate control algorithm. The
network s optimisation problem may be cast in primal or dual form: this leads naturally to two classes of algorithm, which
may be interpreted in terms of either congestion indication feedback signals or explicit rates based on shadow prices,
Both classes of algorithm may be generalised to include routing control, and provide natural implementations of
proportionally fair pricing.

= TCP is solving an optimization problem!

= Spurred a lot of research on analyzing and designing network
protocols from the lens of optimization

=~ 6000 citations

50

Utility Function

0 2 a 6 8 10
T
" The benefit derived from sending at rate x

= We'll assume U(.) is increasing & concave 51

Examples of Utility Functions

10

| J}\ log(x)

ALY

X

-10

10

Network Utility Maximization (NUM)

X c1=1 Mb/s c2=1 Mb/s

X2
* maximize log(x,) + log(x,) + log(xs)
* subject to: X, +X%, <1

. X; +X3£1

53

Network Utility Maximization (NUM)

c1=1 Mb/s c2=1 Mb/s

X1

X2

* maximize log(x,) + log(x,) + log(xs)

* subject to: 1 1 o l* 1
X | <
[1 0 1J[x3 — |7

54

NUM: General Case
maximize EUi (x,)

subject to:

RLxN
routing matrix

55

NUM Example 1:
Throughput Maximization
c1=1 Mb/s c2=1 Mb/s

X1

| o -
\‘} X3
X2
* maximize X; + X, + X3
X,* =0 Mb/s
e subject to: X, + X% <1 - X* =1 Mb/s
| - xs* =1 Mb/s

X; +X3 51

56

NUM Example 2:
Proportional Fairness

c1=1 Mb/s c2=1 Mb/s
| N

7 -

* maximize log(x;) + log(x,) + log(x;)

X1

X2

X.* =1/3 Mb/s

* subject to: x; +x,< 1 - X* = 2/3 Mbl/s
X, + X3 <1 X3* = 2/3 Mb/s

57

NUM Example 3:
“a-fairness”

X c1=1 Mbl/s c2=1 Mb/s
- V4
X3
X2 _—
o x; = a=0 (aconstant)
* Maximize E
P l-a alpha Objective
» subject to: X, + X, < 1 a=0 Tput Maximization
o=1 Proportional Fairness

X; +X: <1

o =2infty Max-min Fairness

What utility function does TCP have?

* Reverse engineering
* TCP Reno
« Utilities are arctan(x)
* Prices are end-to-end packet loss
* TCP Vegas
« Utilities are log(x), i.e., proportional fairness
* Prices are end-to-end packet delays
* Forward engineering
* Use decomposition to design new variants of TCP
* E.g., TCP FAST
e Simplifications

* Fixed set of connections, focus on equilibrium behavior, ignore feedback delays and
queuing dynamics

59

sources

1. Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V.

(2016). BBR: Congestion-based congestion control. Queue, 14(5),
20-53.

2. BBR slides from Yuchung Cheng, Google

3. CUBIC slides from Sangtae Ha, University of Colorado, Boulder
4. NUM slides from Mohammad Alizadeh, MIT

60

