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Outline

• TCP Review
• New TCP flavors
• Multipath-TCP
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• Sequence numbers
• Congestion control

• CUBIC
• BBR

• Mathematical modeling of TCP

Q: How should flows 
compete for bandwidth 
when there is congestion 
in the network?
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Who Uses What?

• Mac OS X: CUBIC (default), New Reno
• Windows: Reno (default), CTCP
• Linux: CUBIC (default), Reno

Web server OS share
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TCP Tahoe vs. TCP Reno

• Two similar versions of TCP

• TCP Tahoe (SIGCOMM’88 paper)

• TCP Reno (1990)

• TCP Tahoe

• Always repeat slow start after a loss

• Assign slow-start threshold to half of congestion window

• TCP Reno

• Repeat slow start after timeout-based loss

• Divide congestion window in half after triple duplicate ACK
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• Slow-start: cwnd ß cwnd + 1

• Congestion avoidance: cwnd ß cwnd + 1/MSS

• Loss: retransmit, ssthresh ß cwnd/2, go to slow-start

cwnd ß 1

• Slow-start: cnwd ß cwnd + 1

• Congestion avoidance: cwnd ß cwnd + 1/MSS

• Loss: retransmit, ssthresh ß cwnd/2

cwnd ß cwnd/2, go to congestion avoidance

Source: https://www.geeksforgeeks.org/tcp-tahoe-and-tcp-reno/



Bandwidth-Delay Product
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Source: WAN and Application Optimization Technologies, Cisco
http://www.cisco.com/c/en/us/td/docs/nsite/enterprise/wan/wan_optimization/wan_opt_sg/chap06.html

Measure amount of in-flight data
BDP = bandwidth * RTT

155 Mbps * 200 ms = 31 Mb = 3875 kB 

155 Mbps * 10 ms = 1550 kb = 104 kB 



Performance Problem – Closer look on 
what’s happening inside

• Slow congestion window growth during congestion avoidance
• A TCP connection with 1250-byte packet size and 100ms RTT 

running over 10Gbps link.

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss
cwnd

Slow start

Packet loss

100,000 10Gbps

50,000   5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

big
decrease

slow
increase
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BIC-TCP
Binary Search with Smax and Smin

Smin

Smax

Wmax

Wmin

Available Bandwidth

Linear Search

Binary Search with 
Smin and Smax
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CUBIC – A new TCP variant

• Why a new protocol?
• While the window growth of new TCP protocols is scalable, their fairness 

issue has remained as a major challenge .
• BIC-TCP shows good utilization and stability, but it lacks TCP friendliness and 

RTT fairness.

• CUBIC is an enhanced version of BIC
• Simplifies the BIC window control using a cubic function.
• Improves its TCP friendliness & RTT fairness.
• The window growth function of CUBIC is based on real-time (the elapsed time 

since the last loss event), so that it is independent of RTT.
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CUBIC Main Idea
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where C is a scaling factor, t is the elapsed time from the last window 
reduction, and β is a constant multiplication decrease factor.
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CUBIC TCP Mode

• In short RTT networks, the window growth of CUBIC is slower than 
TCP since CUBIC is independent of RTT
• Want to ensure that CUBIC is as aggressive as regular TCP
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The size of TCP window after time t 
from window reduction.

α: additive factor
β: multiplicative decrease factor
p: packet loss probability
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Contributions
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Experimental Testbed
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http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing



Testbed Setup :
Background Traffic Generation
• They use the Internet measurement studies, which have shown complex 

behaviors and characteristics of Internet traffic.
• TCP RTTs observed in edge routers

• The exponential mean is set to 66ms (one-way delay), then the CDF is very similar to 
the CDF of RTT samples shown in the paper, “Variability in TCP Round-trip Times” by 
J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay in SIGCOMM IMC, 2003.

• Inter-arrival time between two successive TCP connections: Exponential 
distribution (observed from Floyd and Paxson).
• Short-lived flows (web traffic flows) follow Lognormal (Body) and Pareto 

(Tail) Distribution.
• Using the parameters from the paper “Generating Representative Web Workloads 

for Network and Server Performance Evaluation” by Paul Barford, Mark Crovella in 
SigMetric 1998.
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TCP Friendliness

• Dummynet Testbed: 400Mbps, RTT 10ms, 100% router buffer, and 
moderate background traffic
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cwnd



RTT Fairness

• Dummynet Testbed: 400Mbps, 1MB buffer size, background traffic
• Flow A with RTT 160ms
• Flow B with RTT 20-160ms
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Jain’s fairness index



Link Utilization

• Dummynet Testbed : 400Mbps, 4 high-speed TCP flows, background 
traffic, and vary the buffer size from 1MB to 8MB
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Machine Learning for TCP

Source: ”TCP Ex Machina,” Keith Winstein and Hari Balakrishnan, SIGCOMM 2013. 18
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BBR: the story goes back to 2013...

• Many Google services complained about TCP performance

• Internal backbone TCP throughput often < 10 Mbps
• Youtube.com: terrible video quality sometimes, with RTT > 10 s
• Google.com: poor latency in deveoping regions

• Google TCP congestion control was CUBIC (Linux default)
• Packet loss is the sole signal
• Services started to “work around” TCP

• Use parallel connections, tweak TCP knobs, add more network buffers, etc...
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The problem: Loss-based congestion control

• Loss-based congestion control (Reno, CUBIC)

• Keeps sending until it sees a loss

• But packet loss alone is not a good proxy for congestion

• If packet loss comes before congestion, loss-based CC gets low tput

• 10 Gbps over 100 ms RTT needs < 0.000003% packet loss (infeasible)

• 1% loss (feasible) over 100 ms RTT gets only 3 Mbps

• If loss comes after congestion, loss-based CC bloats buffers, suffers 
high delays
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Network congestion and bottlenecks
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Loss-based congestion control in deep buffers
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Loss-based congestion control in shallow 
buffers
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Optimal operating point
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Estimating optimal point (max BW, min RTT)
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The devil is in the details...
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Overall goals

1. Pace yourself: Send with rate equal to the estimated bottleneck 
bandwidth (BtlBw)
• cycle_gain parameter

2. Limit yourself: Total data in flight = bandwidth-delay product
• cwnd_gain parameter

28



Sending a packet
function send(packet) 

bdp = BtlBwFilter.currentMax × RTpropFilter.currentMin 
if (inflight >= cwnd_gain × bdp) 

// wait for ack or retransmission timeout 
return 

if (now >= nextSendTime) 
packet = nextPacketToSend() 
if (! packet) 

app_limited_until = inflight 
return 

packet.app_limited = (app_limited_until > 0) 
packet.sendtime = now 
packet.delivered = delivered 
packet.delivered_time = delivered_time 
ship(packet) 
nextSendTime = now + packet.size / (cycle_gain × BtlBwFilter.currentMax) 

timerCallbackAt(send, nextSendTime) 
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To see max BW, min RTT: probe both sides of 
BDP
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Estimate RTT, BtlBw: On Receiving an ACK

function onAck(packet) 
rtt = now - packet.sendtime 
update_min_filter(RTpropFilter, rtt) 
delivered += packet.size 
delivered_time = now 
deliveryRate = (delivered - packet.delivered) / (delivered_time -

packet.delivered_time) 
if (deliveryRate > BtlBwFilter.currentMax || ! packet.app_limited) 

update_max_filter(BtlBwFilter, deliveryRate) 
if (app_limited_until > 0) 

app_limited_until = app_limited_until - packet.size 
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Current estimate

Current estimate



Probe Example

• Periodically increase
“cycle gain” to probe
• Decrease it after to

clear up queues
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TCP Data and ACK Aggregation

• Commonly used for amortizing overheads to increase efficiency
• In interrupt processing and hardware/software offload mechanisms (TSO)
• In shared media like WiFi, cellular, cable modems

• ACK aggregation severely limited throughput in initial BBR release
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Full WiFi trace: receiver
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Full WiFi trace: sender
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Zoomed-in WiFi trace: sender
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Zoomed-in WiFi trace: receiver
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WiFi RTTs
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Solution

• Provision cwnd based on degree of ACK aggregation (extra_acked)

extra_acked = excess data ACKed beyond expected amount over this 

time interval

= actual acked – estimated_BW * time_interval

Cwnd = estimated_BW * min_RTT + max(extra_acked, len=10 RTT)
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BBR aggregation estimator: visualization
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Comparison with TCP CUBIC
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Lesson learned from developing BBR

• Any algorithm can only work well with clear feedback
• Delay often not reflecting queuing on the Internet
• Loss is flaky if induced by transient burst
• ECN is iffy if routers mark them differently
• Bandwidth is highly dynamic and vulnerable to ACK compression

• The Internet is (and always will be) full of tricks
• AQMs & policers assume TCP always backs off on drops
• Middleboxes delay (or even delete) ACKs for efficiency

• Any congestion control needs continuous refinement to perform well
• Major performance bugs from unexpected places: delayed ACK, sender/receiver 

segment offload, socket options, kernel memory management, etc...

42



Outline

• TCP Review
• New TCP flavors
• Multipath-TCP
• CUBIC
• BBR

• Mathematical modeling of TCP

Q: How should flows 
compete for bandwidth 
when there is congestion 
in the network?

44



What Problem Does a Protocol Solve?

• BGP path selection
• Select a path that each AS on the path is willing to use
• Adapt path selection in the presence of failures

• TCP congestion control
• Prevent congestion collapse of the Internet
• Allocate bandwidth fairly and efficiently

• But, can we be more precise?
• Define mathematically what problem is being solved
• To understand the problem and analyze the protocol
• To predict the effects of changes in the system
• To design better protocols from first principles



What Problem is TCP really solving?
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1 Mb/s
x1 = ?

x2 = ?

x3 = ?

Max-min rate allocation?

x1 x2 x3
Max-min 1/3 1/3 1/3

TCP 1/3 1/3 1/3Assuming equal 
RTTs



What Problem is TCP really solving?

47

1 Mb/sx1 = ?

x2 = ?
x3 = ?

Max-min rate allocation?

1 Mb/s

x1 x2 x3
Max-min 1/2 1/2 1/2

TCP ~0.4 ~0.6 ~0.6



What Problem is TCP really solving?
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1 Mb/sx1 = ?

x2 = ?
x3 = ?

1 Mb/s1 Mb/s

What is the difference between these links?



What Problem is TCP really solving?
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Network Utility Maximization
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§ TCP is solving an optimization problem!
§ Spurred a lot of research on analyzing and designing network 

protocols from the lens of optimization
§ ~ 6000 citations



Utility Function

§ The benefit derived from sending at rate x
§ We’ll assume U(.) is increasing & concave 51

Good model for elastic flows
§ e.g. file downloads



Examples of Utility Functions
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x log(x)

−1
x



Network Utility Maximization (NUM)

• maximize          log(x1) + log(x2) + log(x3)

• subject to: x1 + x2 ≤ 1
• x1 + x3 ≤ 1
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c1 = 1 Mb/sx1 

x2 
x3 

c2 = 1 Mb/s



Network Utility Maximization (NUM)

• maximize          log(x1) + log(x2) + log(x3)

• subject to:
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x1
x2
x3

1      1      0 ≤1      0      1

c1 = 1 Mb/sx1 

x2 
x3 

c2 = 1 Mb/s

1
1



NUM: General Case

55

Ui
i=1

N

∑ (xi )maximize 

subject to: x1

x2

xN

c1

c2

cL

0  1  0        1  1
1  0  1        0  0

0  0  1        1  0

≤

§ N flows
§ L links

RLxN
routing matrix 



NUM Example 1: 
Throughput Maximization
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• maximize x1 + x2 + x3

• subject to: x1 + x2 ≤ 1
x1 + x3 ≤ 1

c1 = 1 Mb/sx1 

x2 
x3 

c2 = 1 Mb/s

x1
★ = 0 Mb/s

x2
★ = 1 Mb/s

x3
★ = 1 Mb/s



NUM Example 2: 
Proportional Fairness
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• maximize log(x1) + log(x2) + log(x3)

• subject to: x1 + x2 ≤ 1
x1 + x3 ≤ 1

c1 = 1 Mb/sx1 

x2 
x3 

c2 = 1 Mb/s

x1
★ = 1/3 Mb/s

x2
★ = 2/3 Mb/s

x3
★ = 2/3 Mb/s



NUM Example 3:
“α-fairness”
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c1 = 1 Mb/sx1 

x2 
x3 

c2 = 1 Mb/s

• maximize 

• subject to: x1 + x2 ≤ 1
x1 + x3 ≤ 1

xi
1−α

1−αi=1

3

∑ § α ≥ 0  (a constant)
alpha Objective
α = 0 Tput Maximization
α = 1 Proportional Fairness

α èinfty Max-min Fairness



What utility function does TCP have?

• Reverse engineering
• TCP Reno

• Utilities are arctan(x)
• Prices are end-to-end packet loss

• TCP Vegas
• Utilities are log(x), i.e., proportional fairness
• Prices are end-to-end packet delays

• Forward engineering
• Use decomposition to design new variants of TCP
• E.g., TCP FAST

• Simplifications
• Fixed set of connections, focus on equilibrium behavior, ignore feedback delays and 

queuing dynamics
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