
Transport Layer: TCP CUBIC, BBR
CS 204: Advanced Computer Networks

Oct 20, 2023
Adapted from Jiasi’s CS 204 slides for Spring 23

1

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP

• Basics
• Sequence numbers
• Congestion control

• CUBIC
• BBR

• Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

2

Who Uses What?

• Mac OS X: CUBIC (default), New Reno
• Windows: Reno (default), CTCP
• Linux: CUBIC (default), Reno

Web server OS share
3

TCP Tahoe vs. TCP Reno

• Two similar versions of TCP

• TCP Tahoe (SIGCOMM’88 paper)

• TCP Reno (1990)

• TCP Tahoe

• Always repeat slow start after a loss

• Assign slow-start threshold to half of congestion window

• TCP Reno

• Repeat slow start after timeout-based loss

• Divide congestion window in half after triple duplicate ACK

4

• Slow-start: cwnd ß cwnd + 1

• Congestion avoidance: cwnd ß cwnd + 1/MSS

• Loss: retransmit, ssthresh ß cwnd/2, go to slow-start

cwnd ß 1

• Slow-start: cnwd ß cwnd + 1

• Congestion avoidance: cwnd ß cwnd + 1/MSS

• Loss: retransmit, ssthresh ß cwnd/2

cwnd ß cwnd/2, go to congestion avoidance

Source: https://www.geeksforgeeks.org/tcp-tahoe-and-tcp-reno/

Bandwidth-Delay Product

5
Source: WAN and Application Optimization Technologies, Cisco
http://www.cisco.com/c/en/us/td/docs/nsite/enterprise/wan/wan_optimization/wan_opt_sg/chap06.html

Measure amount of in-flight data
BDP = bandwidth * RTT

155 Mbps * 200 ms = 31 Mb = 3875 kB

155 Mbps * 10 ms = 1550 kb = 104 kB

Performance Problem – Closer look on
what’s happening inside

• Slow congestion window growth during congestion avoidance
• A TCP connection with 1250-byte packet size and 100ms RTT

running over 10Gbps link.

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss
cwnd

Slow start

Packet loss

100,000 10Gbps

50,000 5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

big
decrease

slow
increase

6

BIC-TCP
Binary Search with Smax and Smin

Smin

Smax

Wmax

Wmin

Available Bandwidth

Linear Search

Binary Search with
Smin and Smax

7
time

Congestion window
(cwnd)

CUBIC – A new TCP variant

• Why a new protocol?
• While the window growth of new TCP protocols is scalable, their fairness

issue has remained as a major challenge .
• BIC-TCP shows good utilization and stability, but it lacks TCP friendliness and

RTT fairness.

• CUBIC is an enhanced version of BIC
• Simplifies the BIC window control using a cubic function.
• Improves its TCP friendliness & RTT fairness.
• The window growth function of CUBIC is based on real-time (the elapsed time

since the last loss event), so that it is independent of RTT.

8

CUBIC Main Idea

9
where C is a scaling factor, t is the elapsed time from the last window
reduction, and β is a constant multiplication decrease factor.

W
in

do
w

 S
iz

e

Time

Wmax

slow down

accelerate

accelerateSteady State Behavior

Max probing

Wmin

CUBIC TCP Mode

• In short RTT networks, the window growth of CUBIC is slower than
TCP since CUBIC is independent of RTT
• Want to ensure that CUBIC is as aggressive as regular TCP

10

Average sending rate of AIMD =

(TCP). Thus,

: window size =if >
Otherwise : window size =

b
ba

+
-

´=
1
13

The size of TCP window after time t
from window reduction.

α: additive factor
β: multiplicative decrease factor
p: packet loss probability

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP
• CUBIC
• BBR

• Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

11

Contributions

12

W
in

do
w

 S
iz

e

Time

Wmax
slow down

accelerate

accelerate
Steady State Behavior

Max probing

Wmin

Algorithm
Practical
deployment

Experimental Validations

Experimental Testbed

13

http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing

Testbed Setup :
Background Traffic Generation
• They use the Internet measurement studies, which have shown complex

behaviors and characteristics of Internet traffic.
• TCP RTTs observed in edge routers

• The exponential mean is set to 66ms (one-way delay), then the CDF is very similar to
the CDF of RTT samples shown in the paper, “Variability in TCP Round-trip Times” by
J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay in SIGCOMM IMC, 2003.

• Inter-arrival time between two successive TCP connections: Exponential
distribution (observed from Floyd and Paxson).
• Short-lived flows (web traffic flows) follow Lognormal (Body) and Pareto

(Tail) Distribution.
• Using the parameters from the paper “Generating Representative Web Workloads

for Network and Server Performance Evaluation” by Paul Barford, Mark Crovella in
SigMetric 1998.

14

TCP Friendliness

• Dummynet Testbed: 400Mbps, RTT 10ms, 100% router buffer, and
moderate background traffic

15

cwnd

RTT Fairness

• Dummynet Testbed: 400Mbps, 1MB buffer size, background traffic
• Flow A with RTT 160ms
• Flow B with RTT 20-160ms

16

Jain’s fairness index

Link Utilization

• Dummynet Testbed : 400Mbps, 4 high-speed TCP flows, background
traffic, and vary the buffer size from 1MB to 8MB

17

Machine Learning for TCP

Source: ”TCP Ex Machina,” Keith Winstein and Hari Balakrishnan, SIGCOMM 2013. 18

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP
• CUBIC
• BBR

• Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

19

BBR: the story goes back to 2013...

• Many Google services complained about TCP performance

• Internal backbone TCP throughput often < 10 Mbps
• Youtube.com: terrible video quality sometimes, with RTT > 10 s
• Google.com: poor latency in deveoping regions

• Google TCP congestion control was CUBIC (Linux default)
• Packet loss is the sole signal
• Services started to “work around” TCP

• Use parallel connections, tweak TCP knobs, add more network buffers, etc...

20

The problem: Loss-based congestion control

• Loss-based congestion control (Reno, CUBIC)

• Keeps sending until it sees a loss

• But packet loss alone is not a good proxy for congestion

• If packet loss comes before congestion, loss-based CC gets low tput

• 10 Gbps over 100 ms RTT needs < 0.000003% packet loss (infeasible)

• 1% loss (feasible) over 100 ms RTT gets only 3 Mbps

• If loss comes after congestion, loss-based CC bloats buffers, suffers
high delays

21

Network congestion and bottlenecks

22

Loss-based congestion control in deep buffers

23

Loss-based congestion control in shallow
buffers

24

Optimal operating point

25

Estimating optimal point (max BW, min RTT)

26

The devil is in the details...

27

Overall goals

1. Pace yourself: Send with rate equal to the estimated bottleneck
bandwidth (BtlBw)
• cycle_gain parameter

2. Limit yourself: Total data in flight = bandwidth-delay product
• cwnd_gain parameter

28

Sending a packet
function send(packet)

bdp = BtlBwFilter.currentMax × RTpropFilter.currentMin
if (inflight >= cwnd_gain × bdp)

// wait for ack or retransmission timeout
return

if (now >= nextSendTime)
packet = nextPacketToSend()
if (! packet)

app_limited_until = inflight
return

packet.app_limited = (app_limited_until > 0)
packet.sendtime = now
packet.delivered = delivered
packet.delivered_time = delivered_time
ship(packet)
nextSendTime = now + packet.size / (cycle_gain × BtlBwFilter.currentMax)

timerCallbackAt(send, nextSendTime)

29

To see max BW, min RTT: probe both sides of
BDP

30

Estimate RTT, BtlBw: On Receiving an ACK

function onAck(packet)
rtt = now - packet.sendtime
update_min_filter(RTpropFilter, rtt)
delivered += packet.size
delivered_time = now
deliveryRate = (delivered - packet.delivered) / (delivered_time -

packet.delivered_time)
if (deliveryRate > BtlBwFilter.currentMax || ! packet.app_limited)

update_max_filter(BtlBwFilter, deliveryRate)
if (app_limited_until > 0)

app_limited_until = app_limited_until - packet.size

31

Current estimate

Current estimate

Probe Example

• Periodically increase
“cycle gain” to probe
• Decrease it after to

clear up queues

32

TCP Data and ACK Aggregation

• Commonly used for amortizing overheads to increase efficiency
• In interrupt processing and hardware/software offload mechanisms (TSO)
• In shared media like WiFi, cellular, cable modems

• ACK aggregation severely limited throughput in initial BBR release

33

Full WiFi trace: receiver

34

Full WiFi trace: sender

35

Zoomed-in WiFi trace: sender

36

Zoomed-in WiFi trace: receiver

37

WiFi RTTs

38

Solution

• Provision cwnd based on degree of ACK aggregation (extra_acked)

extra_acked = excess data ACKed beyond expected amount over this

time interval

= actual acked – estimated_BW * time_interval

Cwnd = estimated_BW * min_RTT + max(extra_acked, len=10 RTT)

39

BBR aggregation estimator: visualization

40

Comparison with TCP CUBIC

41

Lesson learned from developing BBR

• Any algorithm can only work well with clear feedback
• Delay often not reflecting queuing on the Internet
• Loss is flaky if induced by transient burst
• ECN is iffy if routers mark them differently
• Bandwidth is highly dynamic and vulnerable to ACK compression

• The Internet is (and always will be) full of tricks
• AQMs & policers assume TCP always backs off on drops
• Middleboxes delay (or even delete) ACKs for efficiency

• Any congestion control needs continuous refinement to perform well
• Major performance bugs from unexpected places: delayed ACK, sender/receiver

segment offload, socket options, kernel memory management, etc...

42

Outline

• TCP Review
• New TCP flavors
• Multipath-TCP
• CUBIC
• BBR

• Mathematical modeling of TCP

Q: How should flows
compete for bandwidth
when there is congestion
in the network?

44

What Problem Does a Protocol Solve?

• BGP path selection
• Select a path that each AS on the path is willing to use
• Adapt path selection in the presence of failures

• TCP congestion control
• Prevent congestion collapse of the Internet
• Allocate bandwidth fairly and efficiently

• But, can we be more precise?
• Define mathematically what problem is being solved
• To understand the problem and analyze the protocol
• To predict the effects of changes in the system
• To design better protocols from first principles

What Problem is TCP really solving?

46

1 Mb/s
x1 = ?

x2 = ?

x3 = ?

Max-min rate allocation?

x1 x2 x3
Max-min 1/3 1/3 1/3

TCP 1/3 1/3 1/3Assuming equal
RTTs

What Problem is TCP really solving?

47

1 Mb/sx1 = ?

x2 = ?
x3 = ?

Max-min rate allocation?

1 Mb/s

x1 x2 x3
Max-min 1/2 1/2 1/2

TCP ~0.4 ~0.6 ~0.6

What Problem is TCP really solving?

48

1 Mb/sx1 = ?

x2 = ?
x3 = ?

1 Mb/s1 Mb/s

What is the difference between these links?

What Problem is TCP really solving?

49

Network Utility Maximization

50

§ TCP is solving an optimization problem!
§ Spurred a lot of research on analyzing and designing network

protocols from the lens of optimization
§ ~ 6000 citations

Utility Function

§ The benefit derived from sending at rate x
§ We’ll assume U(.) is increasing & concave 51

Good model for elastic flows
§ e.g. file downloads

Examples of Utility Functions

52

x log(x)

−1
x

Network Utility Maximization (NUM)

• maximize log(x1) + log(x2) + log(x3)

• subject to: x1 + x2 ≤ 1
• x1 + x3 ≤ 1

53

c1 = 1 Mb/sx1

x2
x3

c2 = 1 Mb/s

Network Utility Maximization (NUM)

• maximize log(x1) + log(x2) + log(x3)

• subject to:

54

x1
x2
x3

1 1 0 ≤1 0 1

c1 = 1 Mb/sx1

x2
x3

c2 = 1 Mb/s

1
1

NUM: General Case

55

Ui
i=1

N

∑ (xi)maximize

subject to: x1

x2

xN

c1

c2

cL

0 1 0 1 1
1 0 1 0 0

0 0 1 1 0

≤

§ N flows
§ L links

RLxN
routing matrix

NUM Example 1:
Throughput Maximization

56

• maximize x1 + x2 + x3

• subject to: x1 + x2 ≤ 1
x1 + x3 ≤ 1

c1 = 1 Mb/sx1

x2
x3

c2 = 1 Mb/s

x1
★ = 0 Mb/s

x2
★ = 1 Mb/s

x3
★ = 1 Mb/s

NUM Example 2:
Proportional Fairness

57

• maximize log(x1) + log(x2) + log(x3)

• subject to: x1 + x2 ≤ 1
x1 + x3 ≤ 1

c1 = 1 Mb/sx1

x2
x3

c2 = 1 Mb/s

x1
★ = 1/3 Mb/s

x2
★ = 2/3 Mb/s

x3
★ = 2/3 Mb/s

NUM Example 3:
“α-fairness”

58

c1 = 1 Mb/sx1

x2
x3

c2 = 1 Mb/s

• maximize

• subject to: x1 + x2 ≤ 1
x1 + x3 ≤ 1

xi
1−α

1−αi=1

3

∑ § α ≥ 0 (a constant)
alpha Objective
α = 0 Tput Maximization
α = 1 Proportional Fairness

α èinfty Max-min Fairness

What utility function does TCP have?

• Reverse engineering
• TCP Reno

• Utilities are arctan(x)
• Prices are end-to-end packet loss

• TCP Vegas
• Utilities are log(x), i.e., proportional fairness
• Prices are end-to-end packet delays

• Forward engineering
• Use decomposition to design new variants of TCP
• E.g., TCP FAST

• Simplifications
• Fixed set of connections, focus on equilibrium behavior, ignore feedback delays and

queuing dynamics

59

Sources

1. Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V.
(2016). BBR: Congestion-based congestion control. Queue, 14(5),
20-53.

2. BBR slides from Yuchung Cheng, Google

3. CUBIC slides from Sangtae Ha, University of Colorado, Boulder
4. NUM slides from Mohammad Alizadeh, MIT

60

