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Abstract—In this paper, we present our recent work in progress
on 4G mobile network analysis. In order to provide an in-
depth study on the closed network operations, we advocate a
novel approach via two-level, device-centric machine learning
that can open up the system behaviors and facilitate fine-grained
analysis . We describe our proposed approach, and use the latency
analysis on two popular mobile apps (Web browsing and Instant
Messaging) to illustrate how our scheme works. We further
present preliminary results and discuss open issues.

I. INTRODUCTION

In recent years, mobile access to the Internet via the 4G

LTE network has become the norm rather than exceptions for

billions of global users. To fully understand and refine the

system design and operations, fine-grained network analysis

has been an important topic. Take the latency analysis as an

example. On one hand, latency plays a critical role for many

apps and greatly affects user experience. Users are typically

sensitive to latency, and tend to abort the Web access or

decrease the usage frequency on instant messaging (IM) if

the perceived latency is high. On the other hand, latency is

also important for operators and service providers. Amazon

claimed that every 100 ms latency would cost them 1% in

sales [1], while Google found an extra 500 ms in search page

generation time killed user satisfaction and dropped 20% in

traffic [1]. In a KissMetrics study [2], 73% of mobile internet

users say that they have encountered a Website too slow to

load, with 1-second delay in page response results in 7%

reduction in conversions.

In this paper, we identify issues on mobile network analysis,

as well as limitations with the convention approaches, which

are either problem specific or infrastructure based. Instead,

we make a case for a two-level, device-centric approach via

machine learning. In our approach, each mobile device will

sense the mobile network by collecting the runtime data traces

and apply device-specific, local machine learning algorithms

on network analysis. The device subsequently shares the

analysis results to the cloud processor for aggregated pro-

cessing. Overall, each device can obtain fine-grained, runtime

view through its local analysis, where the cloud processor

offers coarse-grained, global view across multiple devices and

geographic regions.

We further illustrate our methodology in a case study on

latency analysis for mobile apps over 4G LTE networks. We

assess two popular apps, Web browsers (e.g., Safari on iphones

and Chrome on Android phones) and instant messaging (IM)

apps (e.g., WhatsApp), over four US LTE carriers. Our study

can first provide fine-grained analysis at each device. It un-

covers all sources of latency for mobile data access, including

control-plane operations, data-plane signaling, and data-plane

packet forwarding. For control-plane latency, the problem is

that, LTE frequently tears down the established data access, to

save energy at the device and release allocated radio resource

at the network. Every time the application requires data access,

LTE must rerun its control-plane procedures to establish this

access, thus incurring considerable latency due to the signaling

exchanges and connectivity state transfer. Whenever the app

generates bursty traffic, this delay component is likely to

become a main source for latency. For data-plane latency,

signaling procedures to allocate time slots over the radio link

contribute to non-negligible latency, whereas packet transmis-

sions and retransmissions will also take time to complete. Once

the user roams, handover will incur additional latency for the

mobile apps.

Given the local results from each device, the high-level

synthesizer can further reveal the global results across devices.

We have three concrete findings: (1) LTE radio connectivity

is short-lived and triggers frequent data access setup (every

133.6 s on average). It is rooted in the LTE control-plane

design for radio resource control at the network side, and

further aggravated by the phone-side power-saving mode;

(2) The latency incurred by data access setup ranges from

147.9ms to 196.3ms on average for US mobile carriers.

However, it may go up to 2.96 s in rare cases. Moreover,

this overhead is insensitive to varying radio link quality; (3)

Both radio connectivity setup and connectivity state transfer

may be the dominating factors in LTE data access setup

latency. Random access is the main bottleneck for radio

connectivity setup, while multiple rounds of state exchanges

among multiple network nodes contribute to the latter. These

latencies contribute 42.3% of overall Web latency, and 51.4%

of overall IM latency on average.

The rest of the paper is structured as follows. Section II

introduces 4G LTE network background and identifies issues

for its network analysis. Section III discusses limitations of

the current infrastructure-based scheme, and makes a case

for two-level, device-centric machine learning based approach.

It further sketches out our proposed scheme. Section IV

describes the detailed procedure on applying the approach

on the case study of latency analysis. Section V presents the

preliminary analysis results by using the procedure. Section



VI discusses the possible solutions and future issues. Finally,

Section VII concludes the paper.

II. ISSUES ON MOBILE NETWORK ANALYSIS

A. Running Mobile Apps over 4G Networks

We use two popular mobile applications, Web browsing and

instant messaging (IM), to illustrate how mobile apps work

over the 4G LTE network.

Figure 1 exemplifies the step-by-step procedures for mobile

Web access over LTE (IM follows similar procedures). In Step

(a), the Web browser (e.g., Safari) sends its HTTP request to

the mobile OS, which subsequently delivers the IP packets

to the LTE interface in Step (b). Assuming that the phone

initially stays in the idle mode (i.e., no data transfer), no IP

packets can be delivered until data access is first established

over LTE (mandated by the 3GPP standards). To this end,

the LTE chipset on the phone starts to initiate new data

access setup with the LTE network in Step (c). This typically

requires several functions of radio connectivity setup between

the device and the base station, security key derivations for the

new data session, installing states at the device and the base

station, and optional authentication between the device and the

network. Therefore, signaling exchanges may be needed over

multiple nodes (the base station, the mobility controller, and

the user profile server) on the control plane. Upon completing

Step (c), data access is established over LTE. In Step (d),

the LTE interface on the phone can now start to deliver

data packets, which traverse the LTE network (base stations,

gateways) and the wired Internet to reach the Web server. Upon

receiving the HTTP request, the server replies with the HTTP

response message, which traverses the reverse path to reach

the mobile application in Steps (e)(f).

Note that the above data access involves both control-plane

procedures (Step (c)) and data-plane operations (Step (d)). As

illustrated in Figure 2, the control-plane operations follow a

layered protocol stack, and they together provide vital control

functions such as mobility support, radio resource control,

security, etc. Also shown in Figure 2, the data plane operations

include actual data forwarding, as well as the signaling to

allocate radio channels. That is, the data-plane procedures can

be further split into the packet-forwarding operations and the

signaling operations (i.e., radio channel resource allocation of

time slots). Moreover, the operations differ for static setting

and mobility cases, i.e., handoffs are needed for mobility

support. We will further illustrate these details later.

B. Issues on Fine-Grained Network Analysis

We next identify four issues that make network analysis

over such mobile networks be difficult using the conventional

approach.

1) Tightly-guarded system operations: Different from the

Internet, current 4G network operations and runtime

behaviors are not accessible to researchers and end users.

While operators can collect the data traces from the in-

frastructure side, they carefully safeguard their access to

the research community. As a result, 4G mobile network
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Fig. 1: Mobile apps access servers via LTE network.
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operations remain closed to users and researchers, thus

hindering fast research progress.

2) Access barriers to both hardware and software stack:

While the users can access certain mobile OS (e.g.,

Android), their access to the LTE hardware, as well as

the software stack, is mostly prohibitive. The research

community cannot access the radio hardware, or re-

configure the parameters, or test with new functions in

general.

3) Complexity in data and control planes: Different from

the Internet, 4G networks run much more complex

functions on both planes. On the control plane, they

provide more signaling features beyond the Internet

counterpart, including mobility support, radio resource

management, security, etc. On the data plane, in addition

to packet forwarding, they also run signaling operations

to allocate time slots for packets over the radio channel.

4) Distributed operations across multiple protocol layers.

The mobile network operations also span distributed en-

tities, including devices, network infrastructure, mobile

OS, and apps. At each entity, they further operate across

multiple layers beyond the Internet TCP/IP protocol

stack. on both control and data planes



III. A CASE FOR DEVICE-CENTRIC, TWO-LEVEL

ML-BASED APPROACH

A. State-of-the-Arts and Limitations

The fine-grained 4G network analytics today are largely

infrastructure-based. These platforms are usually owned by

the 4G LTE operators (such as AT&T and T-Mobile), and

deployed in operators’ data centers. They collect the mobile

network data from the 4G LTE infrastructure (base stations,

gateways, and controllers), aggregate them over short time

intervals, and perform analytics over these aggregated data.

The state-of-the-art analytics platforms can perform the control

and data-plane analysis [3], [4]. But in reality, the data-

plane analysis is usually enabled for a short period (e.g. for

troubleshooting) due to the huge data packet volumes [3].

The infrastructure-based analytics have three fundamental

limitations: (1) Not scalable: The infrastructure-based so-

lutions are not scalable to massive data. In particular, the

existing solutions cannot support the large-scale data-plane

analysis due to the huge data volume; (2) Incomplete dataset:

The infrastructure-based analytics cannot directly collect the

data of user-perceived QoEs. Although indirect inference is

possible (via DPIs), it can be inaccurate and even misleading;

(3) Opaqueness: The operator-owned mobile network analytics

is not accessible to researchers and mobile app developers. The

operators are reluctant to share their infrastructure-side data or

analytics with the community.

B. The Promise of Device-Centric ML Approach

This paper explpores a device-centric approach for mobile

network analysis. Different from the infrastructure-based so-

lutions today, our approach leverage the end devices to collect

the network data, perform the local ML-based analysis, and

crowdsource the analytics results to form a global mobile

network knowledge base. This offers three unique benefits:

• Scalability: By offloading the most analysis to the end

devices, our approach can support both the control and

data-plane analysis, and scale out to huge data volumes

and large geographical areas;

• Direct access to QoEs: The end device is the only place

that can directly observe the user-perceived experiences-

of-qualities (QoEs). Our approach can naturally support

the correlation analysis between QoEs and the underly-

ing 4G LTE network behaviors. This would yield new

insights on how mobile network impacts the QoEs;

• Availability: Rather than relying on the network operators,

the researchers and mobile app developers can readily

perform the analytics using their own devices.

C. Our Two-Level Approach

Our device-centric analysis uses a two-level framework.

At the local level, it senses the mobile network data inside

each smartphone via hardware-software coordination. After

the data pre-processing, it runs local ML algorithms to infer

the control-plane protocol operations, and predict the data-

plane performance and reliability. Next, our approach moves

toward the global level: It crowdsources the analysis results

from massive phones, and extracts feedback for smartphones

to take intelligent adaptations. We next elaborate each level.

Local analysis: At this level, we run the mobile network

data collection, pre-processing, and ML algorithms inside each

device. It takes three steps:

1. Sensing the “black-box” mobile network: For comprehen-

sive analysis, we collect the runtime, full-stack (from physical

to app layer) mobile network data from two sources:

• Above-IP network data, which includes all the packets

from the TCP/IP protocol stack. Such information can be

readily obtained through the classical tcpdump;

• Below-IP network data, which includes the over-the-

air control/data-plane signaling messages in 4G LTE. These

messages carry rich network information, such as the wireless

communication, link-layer data transfer, mobility management,

and session management. Different from the above-IP data,

these messages are not readily accessible inside the user space.

To solve it, we have built an in-phone tool (MobileInsight [5])

via software-hardware collaboration: By leveraging a side

channel (/dev/diag) across the software-hardware boundary,

MobileInsight exposes over-the-air 4G LTE messages to the

user space at runtime.

2. Automated data pre-processing: For accurate and efficient

analysis, we pre-process the above raw data in two steps:

• Data cleaning: We eliminate the noisy items from the raw

network data. For the above-IP data, we remove the TCP/IP

packets that do not belong to the target app (e.g. background

push notification data). For the below-IP data, we filter the

over-the-air signaling messages that are of interest.

• Data integration: Given the data from two sources

(tcpdump and MobileInsight), we need to align them before

running the analysis. Specifically, for each TCP/IP packet, we

should map it to the underlying 4G LTE signaling messages

that are responsible for its delivery. This is realized by aligning

these data based on timestamp and packet/message size. §IV

will elaborate how this works.

3. Local ML-based analysis: We next run domain-specific ML

algorithms to analyze the network performance and reliability.

These ML algorithms are classified into two categories:

• Control-plane ML: At the control plane, we aim to predict

the signaling protocol operations that would affect the data

performance. For instance, the control-plane session setup and

migration (in device mobility) would incur extra data access

latencies (§V). To predict them, we observe that many sig-

naling protocol operations are regulated by the standards [6],

[7], and are highly interactive and stateful. We thus adopt the

graphical ML models for the control plane operations. Each

signaling protocol is modeled as a finite state machine. We first

infer the state machine structure based on the standards and

graphical ML algorithms (such as Bayesian network and state

machine merging). Then to predict the protocol operations,

we traverse the inferred state machine based on the runtime



signaling messages, and predict the occurrence of the next

state transition. As an example, we have developed a handoff

prediction algorithm based on this graphical model [5].

• Data-plane ML: At the data plane, our goal is to predict the

data transfer performance, and infer the failure causes (if any).

Different from the control plane, the data-plane performance

and failures may not be appropriately modeled as finite state

machines. Instead of the graphical models, we have developed

regression-based models in various scenarios. For example,

iCellular [8] uses the regression tree algorithm to predict the

runtime performance of different mobile network operators.

In [9], we have built a predictor of the link-layer ACK/NACK

flip based on the timer estimations.

Global analysis: Beyond the local analysis, we move one

step further to scale out the mobile network analytics. This is

realized through the cloud-based post-processing system [10].

It first collects the local analysis results from massive mobile

devices. With the temporal/spatial aggregation, we can obtain

a global knowledge base of the mobile network that covers

large geographical areas, various mobile operators and phone

models. This global knowledge base can offer crowdsourced

feedback for mobile devices, such as ranking the best mobile

network operators, and discovering the better phone settings

for the network performance and reliability.

IV. CASE STUDY ON LATENCY ANALYSIS: PROCEDURES

We now present an in-depth study on latency analysis on

mobile apps over 4G LTE networks. We first present our

methodology that follows our approach above.

Usage setting We run two popular mobile apps. For Web

apps, we run two most popular Web browsers at the mobile

device: Safari on iOS and Chrome on Android. We visit a

small web page when the phone is in the idle mode. The

Web page is 4KB in size with only plain HTML tags. For

each mobile carrier, the experiment is repeated 50 times under

different signal strengths and locations. The tcpdump trace is

used for cross validation.

We test WhatsApp (version 2.17.146) latency on Nexus 6P

(Android 7.1.1). We send an instant message every 20 seconds.

The recipient’s phone screen is turned off when receiving the

message. For each mobile carrier, we repeat the experiment for

at least 50 runs to obtain the average result unless otherwise

specified.

Data sensing We record event timings at three levels. We

first log the application-level timings to quantify the user-

perceived latency. For Web browser, we adopt the Naviga-

tion Timing API [11] to record the precise Web browsing

timestamps. It provides accurate timing for web browsing

events, including the OS overhead, the DNS time, the TCP

connection setup time and page rendering time. For IM app,

we use its internal message database, which logs the epoch

time of each message being sent1. We then use TCP/IP level

logging (tcpdump) and LTE chipset logging (MobileInsight)

1For WhatsApp, we use its msgstore.db.
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Fig. 3: Logging timestamp alignment.

to record the mobile OS and LTE signaling events. These logs

enable the detailed breakdown analysis on data access setup

latency. Figure 3 illustrates the timing and logging model for

data access setup latency. During the experiment, we constrain

the background traffic from other apps to quantify the latency

impact by the assessed applications.

Local processing at each device We further take the

generic approach at each device for efficient local processing

as follows.

a) Timestamp alignment: To correlate the app latency

with the underlying LTE operations, we need to align the

timings for all three levels of logs. We first match the app-level

epoch to the tcpdump record using specific protocols. For

Web browsing, we match the app’s timing of the DNS lookup

event (or TCP connection SYN packet) with its counterpart in

tcpdump timing to obtain the timing offset. The app timing

and the TCP timing may have a gap. We find that such gap is

usually negligible in reality (usually under 1 ms). The reason

is that, the applications we test are written as native apps, with

marginal overheads from app to network layer.

To align the timing events in the MobileInsight logs with

tcpdump logs, we observe that IP packets (from tcpdump)

are encapsulated in the data frames2 over LTE. LTE adds

a fixed-sized frame header (2 bytes) to each IP packet. We

use this linear relation between the PDCP packet recorded by

MobileInsight and the IP packet logged by tcpdump to obtain

the timing offset.

b) Latency breakdown: We next perform a breakdown

analysis on the overall latency. We divide the standardized

procedures, quantify each component, and identify the main

bottleneck.

Figure 4 summarizes the control-plane procedures when

establishing LTE data access (standardized in [13], [6], [14]).

The device first sets up its radio connectivity to the base

station. It then sends the data access request to the mobility

controller using this dedicated radio connectivity. Optionally,

the network and the phone perform mutual authentication. The

base station then fetches the per-device connectivity states

from the controller, which carries critical information for data

access (device ID, QoS profile, and derived security keys, etc.).

2The frames are encapsulated by LTE Packet Data Convergence Protocol
(PDCP) [12].



UL data

Device
Base 

station

Mobility 

controller
Gateway

Profile

server

t1

P1b: RRC connection setup

P1a: RRC connection setup request

P1c: RRC connection setup complete

T!"#$%

&"'#%()
*++,--

PRACH preamble

PRACH response

P2: Service request

P3.)Authentication (optional)

P4.)Initial context setup
P5a: Security mode command

P5b: Security mode complete

P6a: RRC connection reconfig.

Data bearer Data bearer

P6b: RRC connection reconfig. complete

t2

t3

t4

t5

t6

t7

T+/!0

Fig. 4: Control-plane procedures for LTE data access

Last the base station enables the security mode to encrypt the

data over wireless, reconfigures the connectivity based on these

states, and start the data delivery.

The issue for the breakdown analysis is that, certain pro-

cedures inside the LTE network are not directly visible to

the end device. To address it, we correlate the core-network

operations with the device-side traces by following LTE stan-

dards [13], [6], [14]. Figure 4 shows how it works. For each

data access request, we record the timestamps for the events of

radio connectivity setup (t1, t2, t3), radio-level security mode

command (t4, t5) and radio bearer setup (t6, t7). The total

data suspension time is thus Ttotal = t7 − t1, and the radio

connectivity setup latency is Tradio = t3 − t1. The control-

plane latency for establishing data access is Tctrl = t7− t3. It

includes the state transfer from the mobility controller to the

base station, the security mode activation, and the connectivity

reconfiguration.

c) ML scheme: We further apply ML algorithms to

enable latency prediction for application adapting to dynamic

network conditions, and root cause analysis for the unexpected,

large latency factors.

Latency prediction at runtime helps application to adapt to

dynamic network conditions, and potentially improve perfor-

mance. On control plane latency, we target the procedures that

may incur significant latency, e.g. handover. When handover

occurs, web access requests are delayed and sometimes prop-

agate to application layer causing retransmission or timeout.

Therefore, predicting the handover latency could help appli-

cation reschedule its data request, if a handover is imminent.

We predict handover using a decision tree classifier. We are

able to engineer domain specific features (such as LTE control

message that are exchanged immediately before handover

occurrence, including “measurement report”, “mobility control

info” and “measurement config”. The features are binary

encoded, 1 for message exists and 0 for the opposite case.

We also label the dataset indicating a handover is about to

happen if cell ID changes within a window size. We do this

because we know that these specific messages are related to

a handover regulated by 3GPP standards. We then train the

decision tree to detect these messages. The trained decision

tree has a maximum leaf count of 15 and class weight of 0.2

for non-handover and 0.8 for handovers. The predict result

achieving 99.9% accuracy. Last, we fuse the local latency

result on handover with the prediction output of the decision

tree, yielding an estimate of upcoming handover latency.

On data plane, we focus on the frequently incurred

NACK/ACK flip at MAC layer [9]. Part of the LTE link-

layer error recovery mechanism, speeding up the detection

of NACK/ACK flip could reduce the downlink retransmission

latency. We use timer-based regression for early NACK-ACK

flip detection. The approach relies on the domain-specific

insight that the base station takes shorter time to process

NACK than ACK by LTE design. We maintain and update

a device-side timer for the round-trip of NACK, based on

previous NACK-triggered retransmissions using exponential

moving average. When a NACK is sent, the timer starts. If

no response before the timer expires, the algorithm recognizes

that the base station may receive a flipped NACK as ACK.

Root cause analysis of large latency factors provides starting

points on how the app performance may be improved. It

is enabled and bootstrapped by human labeling of a set

of diagnosis cases. We leverage domain knowledge to label

causes of long latency in data plane, for example, packet loss

at RLC layer, ACK/NAK flip at MAC layer, attach failure,

radio link failure etc. With each instance of long data plane

latency, we map it to one or a few of the causes mentioned.

We then construct a Bayesian network to capture the causal

relation between the instance (under what conditions such case

occur) and the diagnosis. Finally, with the parameters learned,

we can infer the maximum a posteriori probability (MAP) of

different causes on a long latency case.

Synthesizer Our next step is to perform aggregate pro-

cessing by using the feedbacks from multiple individual de-

vices. We collect local latency analysis results of common

latency components, such as service request latency at control

plane, grant waiting time at data plane, or long latency caused

by various failure cases. Then we aggregate all these data

points and perform aggregated analysis in the cloud and

further generate new insights. For example, we aggregated

LTE service request latency by radio signal strengths, and find

that it is insensitive to varying radio link quality (Figure 8).

This helps our latency prediction in ML scheme as the radio

link quality is not an effective feature in prediction. We

can further group latency performance by geographical area,

by operators, by device model, by OS build etc. Based on

these result, we have built a cloud knowledge platform that

enables runtime, fine-grained cellular analytical result query
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for latency based on geographical area [10]. This helps in-

depth analytics in understanding the performance difference

observed under different conditions.

V. LEARNING LATENCY: AN EXAMPLE

We provide an example in this section on how to obtain an

in-depth understanding of web access latency in LTE, follow-

ing a top-down approach and with the help of global view. We

first breakdown, for both the individual latency of both data

and control plane and aggregated latency components.

A. App Perceived Latency

As the showcase, we visited a lightweight Web page (https:

//www.bing.com) using latest version of Chrome on Android,

and recorded the timing breakdown by Chrome DevTools.

In one example run, we recorded total 473ms latency for

loading the index page of the website (26.4 KB) under good

LTE signal strength (-95 dBm). This is the total elapsed

time from the URL request sent to the whole Web page is

downloaded and rendered. The Chrome DevTool performed

a coarse breakdown of major events shown in Figure 5,

following the HTML resource timing model detailed in [15].

However, this breakdown does not give sufficient insights

as to why the two major components are taking long time:

DNS (250ms) and waiting time (137ms). To make better

understanding, we performed latency analysis at device-side

first.

B. Two-Step Breakdown at Device Side

We take a two-step approach on device side, by assessing

control plane latency first and analyze data plane latency next.

This is due to the fact that LTE control plane operations,

such as Service Request, precede data forwarding in each

data session. We can further analyze any failure or loss case

using machine learning based approach. Such analysis work

flow for this example applies to other web access requests

as well, as both control plane and data plane procedures here

are repetitively involved. This method is purely automated and

maps both control plane and data plane latency in LTE on the

fly.

Control plane latency We single out LTE control plane

latencies from data access latency. By automatically matching

the LTE control message sequence, we were able to identify

LTE Service Request procedure from the trace. As Figure 5

shows, we separated the LTE service request procedures

(squiggled within the DNS request bar) from the DNS request,

which incurs 172ms latency. This was invisible to the app-

level latency breakdown without below-IP layer breakdown.
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We may even further breakdown the radio RTT time and

processing time at the network side for this control plane

latency.

Data plane latency We next zoom in and focus on the data

access latency (dotted box in Figure 5, including DNS, TCP

and HTTP requests). As the LTE enforces fine-grained radio

resource scheduling, each uplink data request has some waiting

time for allocated radio resource grant. We thus was able to

match such latency using the data-plane message exchange

between the phone and the base station at PHY layer. We count

the time elapsed using the scheduling request message and

the grant allocation received, plus the mandatory 4ms waiting

time before the data can be pushed to the air interface [16]. In

the object request, we mapped three waiting latencies for LTE

grant: before each DNS request (26ms and 12ms), between

DNS response and TCP SYN packet (11ms), and between

TCP SYNACK and first HTTP GET request (12ms). Figure 6

illustrates the details.

Latency mapping for failures In some cases, failure may

occur at either control plane or data plane. For instance, when

handover occurs, the data plane is suspended not only due

to radio reconnection period, but also caused by head-of-

line blocking due to duplicate data. In such case, automated

pattern matching also worked well in breaking down the

total data access waiting time. LTE control messages help

count the disruption of handover waiting time, while duplicate

data detection at data plane identifies head-of-line blocking

contribution. In the example illustrated in Figure 7, the total

708ms waiting time during user mobility was breakdown into

four components: Uplink transmission, handover disruption

(radio reconnection, no data), handover (duplicate data), and



true waiting time.

C. Results on Crowdsourced Analysis

We next describe the crowdsourced latency analysis results

at the synthesizer.

Crowdsourced setting Our case study is based on 15

volunteers (college students, faculty members and company

employees) using 23 phones. They cover seven Android phone

models (Google Pixel, Huawei Nexus 6P, Motorola Nexus

6, Samsung Galaxy S4/S5, LG Optimus 2, and LG Tribute)

and two iPhone models (iPhone 5 and iPhone 6s Plus). They

further include all four major US carriers (Verizon, AT&T, T-

Mobile, Sprint and a virtual operator, Google Project Fi [17]).

Overall, the study uses 95,057 data sessions that require data

access setup via 4G LTE signaling.

Latency by data access setup We next show that, each

LTE data access setup incurs a variable amount of delay.

Moreover, this latency varies across different mobile carriers.

Figure 8 plots the results for five US mobile operators. We

quantify the latency as the elapsed time of between each

data access request and the instant when the device can

send/receive data. The analysis reveals that, given each data

access request, the suspended data access ranges from 77.4ms

to 2956.0ms. Among all samples, the average overall latencies

due to this control-plane operation are 196.3ms, 165.5ms,

147.9ms, 153.6ms, and 163.2ms in AT&T, T-Mobile, Sprint,

Verizon, and Project Fi, respectively.

Another interesting observation is that, the latency incurred

by the data access establishment is insensitive to varying radio

link quality. Figure 8 shows that, the correlation between

the signal strength and the average control-plane latency is

weak. Instead, as a control-plane procedure, the latency due

to data access request is primarily determined by the signaling

operations. We can further validate this with a breakdown

analysis.

Latency breakdown Figure 9 plots the latency breakdown

results for all four operators. It shows that, the overall latency

is dominated by two components:

(1) Tradio: Radio connectivity setup (w/ random access).

Among all the samples, the radio connectivity setup con-

tributes 67.5−1665.0ms of the overall LTE access latency.

On average, it contributes 39.7%, 44.0%, 61.9%, 64.2% and

43.7% of total latency in T-Mobile, AT&T, Verizon, Sprint

and Project-Fi, respectively. It turns out that, such long latency

is mainly induced by the random access procedure. To send

the first signaling message (radio connectivity setup) to the

base station, the phone has to contend for the shared signaling

channel3. This procedure can contribute up to 79.2% (65ms

out of 82ms) of the radio connectivity setup time.

(2) Tctrl: Connectivity state transfer. It contributes 28.75ms

to 2286.25ms of the overall latency among all samples.

On average, it contributes 60.3%, 56.0%, 38.1%, 35.8% and

56.3% of total latency in T-Mobile, AT&T, Verizon, Sprint

and Project-Fi, respectively. It takes long time since it involves

3LTE Physical Random Access Channel (PRACH) [18].

multiple network nodes and roundtrips. The base station has to

fetch the connectivity state from the mobility controller, derive

the security keys out of the state, enable the security mode to

the device, and reconfigures the radio connectivity.

Impact on apps We find out that, the LTE data access setup

is a dominating factor by contributing 42.3% of the total Web

loading time on average, i.e., about 174.4ms. Therefore, TCP

connection setup and DNS lookup will be affected by this

data access request, since they are the initial two steps in Web

loading. TCP connection also setup takes the largest portion,

with LTE control plane latency contributing 62.4% (176ms)

of the TCP connection time (282ms) in Safari. Chrome has

similar results. For DNS lookup, its latency is affected by

LTE’s data access request only for the first time. Later DNS

lookups will be met by phone’s local cache, thus unaffected

by LTE.

For IM, the LTE control-plane procedure is also the main

factor by contributing 51.4% of the latency perceived by each

IM message. The total time of sending out the first data packet

and receiving server’s ACK is 341.3ms. During that time, the

LTE data access setup is trigged and incurs 175.4ms extra

latency on average. However, different from the Web app, this

procedure does not affect the TCP connection setup. Instead,

it affects data delivery in IM apps. IM apps (e.g. WhatsApp,

Messenger, WeChat) may use encryption protocols (e.g. SSL

or TLS) over TCP to deliver message. The TCP setup has been

done once the app launches, thus being affected by LTE only

the first time. They keep an always-on TCP connection. Upon

sending new messages, LTE data access setup takes more than

50% total time to deliver the packet on average.

VI. DISCUSSIONS

The above results also shed light on how to reduce latency.

We describe both short-term fixes and long-term solutions. In

addition to refining data-plane designs, it is equally important

to renovate the control-plane operations for low-latency net-

work access. The key insight is that, the device-centric ML

analysis can provide useful feedback to reduce both control-

plane and data-plane latencies. We discuss how it offers useful

insights, and some unresolved issues that will be explored in

the future.

Data-plane work-arounds. Without signaling protocol up-

dates or infrastructure changes, the client can still mask the

LTE’s data access setup latency. The idea is to keep the device

in the connected state over time, thus preventing repetitive

LTE data access setup. For example, the apps may regularly

send keep-alive messages to avoid entering the idle state.

The cost is on the extra power waste due to the always-on

connectivity. This energy cost can be mitigated if accurate

traffic prediction is feasible. Our recent study [9] has made a

case to demonstrate its feasibility, by developing the domain-

specific data-plane ML algorithms.

Control-plane protocol acceleration. In the long run, the

control-plane procedures should be optimized for low latency.

The device-centric control-plane ML can also provide useful
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Fig. 8: Overall latency for establishing 4G LTE data access. Dots represent max/min value for each group.

(a) T-mobile (b) AT&T (c) Verizon (d) Sprint (e) Project Fi

Fig. 9: Breakdown of 4G LTE latency in signaling operations for data access setup.

optimization hints. In particular, connectivity state transfer

between the base station and the mobility controller should

be accelerated. For example, for static users served by the

same base station, the base station can speed up the state

transfer via caching or pre-fetching. The control-plane ML

can help predict the status of the mobile devices and decide

the appropriate caching/pre-fetching strategies.

Remaining issues and possible directions Our device-

centric mobile network analysis is still in progress. We have

identified some research challenges for further exploration.

First, besides latency analysis, we plan to extend our device-

centric ML approach to other network metrics (throughput,

packet loss, reliability) and application-specific QoEs. Second,

we intend to derive the theoretical bounds on our two-level ML

based scheme. Specifically, we are interested in correlating

the local accuracy at each device and the synthesizer’s global

error bounds. Third, we plan to explore the privacy issues in a

more systematic way to ensure the analysis will preserve each

user’s privacy while offering accurate analysis results. Last

but not the least, we are also in the process of exploring other

AI techniques, such as deep learning and Bayesian Network

Inference, on the root cause analysis of network behaviors.

VII. CONCLUSION AND FUTURE WORK

The 4G LTE network is by far the only large-scale wireless

infrastructure, in par with the wired Internet, which offers

ubiquitous radio coverage and network access. Most users run

their mobile apps over LTE on a daily basis. Therefore, mobile

network analysis is important to help better understand and

refine its design and operations.

In this work, we present preliminary results on our machine

learning based approach to automated network analysis. We

have used the case study on latency analysis to illustrate how

our methodology helps to reveal various latency components

that are unreported in prior work. Moreover, we believe that

our two-level ML based scheme holds promise to unveil the

tightly-guided operation issues over 4G/5G mobile networks

that have been eluding from the research community.
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