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ABSTRACT
Tick is a new SDR system that provides programmability and en-
sures low latency at both PHY and MAC. It supports modular de-
sign and element-based programming, similar to the Click router
framework [23]. It uses an accelerator-rich architecture, where an
embedded processor executes control flows and handles various
MAC events. User-defined accelerators offload those tasks, which
are either computation-intensive or communication-heavy, or re-
quire fine-grained timing control, from the processor, and accelerate
them in hardware. Tick applies a number of hardware and software
co-design techniques to ensure low latency, including multi-clock-
domain pipelining, field-based processing pipeline, separation of
data and control flows, etc. We have implemented Tick and vali-
dated its effectiveness through extensive evaluations as well as two
prototypes of 802.11ac SISO/MIMO and 802.11a/g full-duplex.

1 INTRODUCTION
Software-defined radio (SDR) allows users to build flexible and
configurable wireless communication systems. A number of SDR
platforms are already available for use for months or even years
[2, 27, 32–35, 40]. However, today’s requirements on SDR are dif-
ferent, given the latest technology push (e.g., 5G, wireless edge
computing) and user demand pull (e.g., low-latency VR/AR appli-
cations, runtime control on drones and robotics). Consequently,
the new challenge is to both offer sufficient programmability and
ensure high performance; it has to be for both physical (PHY) and
medium access control (MAC) layers. Unfortunately, we have found
it hard to achieve both in the existing SDR systems.

The domain-specific challenge is that, wireless PHY andMAC dif-
fer in their data-flow and control-flow operations: (a) PHY is heavy
in data-flow processing but lightweight on control flows; MAC
needs complex control but little on data processing. (b) PHY works
with simple pipeline stages for processing, whereas MAC needs
complex branch instructions to perform event handling and control
functions. (c) PHY is dominated by processing latency, whereas
MAC is sensitive to timing. No existing software architecture nor
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hardware design solely addresses all these challenges to ensure
both low latency and good programmability. We thus make a case
for exploring software and hardware co-design solutions.

In this work, we describe the design and prototype of Tick. Tick
is a new SDR system that seeks to the best of both worlds. On
one hand, it provides a simple programming abstraction via graph
of processing elements. Users write individual elements, which
implement simple data processing or control-flow functions at PHY
and MAC. Complete SDR system is built by connecting elements
into the graph. This ismade possible by adopting a novel accelerator-
rich architecture, which consists of an embedded processor plus
a number of user-defined accelerators. The processor focuses on
control flows and various MAC event handling. Accelerators offload
intensive computation, massive data transfer, fine-grained timing
control from the processor, and accelerate these tasks in hardware.

Tick delivers high performance in low latency and high process-
ing throughput using a number of software and hardware tech-
niques. They include multi-clock-domain pipelining, field-based
(rather than frame-based) processing pipeline, separation of data
and control flows, and shadow registers for control flow and status
report.

We have prototyped Tick on both PHY and MAC at a medium-
priced FPGA development board. The implementation of Tick takes
three-year efforts and includes PHY and MAC libraries offering 28
elements for PHY and 12 accelerators for MAC. We prototyped an
802.11ac SISO over an 80MHz channel in Tick on Xilinx Kintex-7
FPGA kit. The measured latencies are 1.86 µs for PHY transmitter
(Tx), 21.62 µs for PHY receiver (Rx), 17 µs for MAC Tx and 3 µs
for MAC Rx. Compared with a simple reference design, Tick re-
duces latency by as much as 1.12 µs for PHY Tx (1.6× reduction,
from 2.98 µs to 1.86 µs1), 26.39 µs for PHY Rx (2.2× reduction, from
48.01 µs to 21.62 µs), 8920 µs for MAC Tx (497× reduction, from
8938 µs to 18 µs) and 8926 µs for MAC Rx (2976×, from 8929 µs to
3 µs). While achieving low latency, Tick consumesmoderate amount
of FPGA resources (less than 30%). Our case studies of 802.11ac 2×2
MIMO and 802.11a/g full-duplex prototypes further confirm the
programmability and latency performance of Tick.

2 A REFERENCE DESIGN FOR SDR
In this section, after introducing SDR, we describe a simple refer-
ence design. This reference adopts popular architectural choices
at both PHY and MAC [22, 26, 33, 40]. We show that this popular
design cannot meet the latency requirements of high-end wireless
networking systems, e.g., 802.11ac [6].
1The latency reduction factor is defined as the reference design latency divided by the
Tick latency. For example, we denote a reduction factor of 1.6 (2.98 µs/1.86 µs) as a
1.6× reduction for simplicity.
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Figure 1: Transmitter and receiver modules for 802.11ac (SISO).

Figure 2: A typical SDR system: Transmitter and Receiver

2.1 SDR Primer
Shown in Figure 2, a typical SDR transmitter/receiver consists of
four subsystems: a radio front-end (RF) that transmits/receives
radio signals through antenna(s), the physical-layer (PHY) process-
ing unit that uses PHY algorithms to convert the radio waveform
into information bits or vice versa, the medium access control
(MAC) processing unit that regulates transmissions over the shared
wireless channel, and the interface to host computer that delivers
higher-layer data packets to MAC or receives data from MAC.

We next briefly review both PHY and MAC. We use the 802.11ac
SISO mode [6] as the reference for description. Note that practical
wireless systems typically share similar design and algorithms,
particularly at PHY.
PHY. PHY transforms information bits into a radio waveform,
or vice versa. PHY has both control and data flows. The control
flow is relatively simple. It sets configuration parameters. The data
flow is more complex. It processes data using multiple functional
blocks, which are pipelined together (illustrated in Figure 1). Data
traverse these blocks. Each block performs certain computation on
the transceived symbols. When the data rate is high (say, 433.3Mbps
for 802.11ac SISO over 80MHz channel, when using 256-QAMmod-
ulation type [6]), these PHY blocks require intensive processing
power. Moreover, they operate on different types of data at different
rates. In 802.11ac SISO, the scrambler works with one bit, while
constellation maps each 6-bit block onto a complex symbol that
uses two 16-bit numbers for 64-QAM.

From the latency standpoint, processing latency dominates the
PHY unit. The required computation also increases with the com-
munication speed.
MAC. MAC arbitrates channel access among all transceivers.
Compared with PHY, MAC has more complex control flow but
relatively simple data flow processing (e.g., CRC and (de)framing).

For its control flow, MAC needs to issue/accept various events
and process each. Moreover, most MAC designs require timely
response to critical events. Some even require accurate timing con-
trol at the granularity of microseconds. For example, in 802.11
CSMA/CA, short inter-frame spacing (SIFS) is needed between a
DATA frame and an ACK frame. The current 802.11ac standard
mandates SIFS to be 16 microseconds (µs) [6]. Fine-grained timing
poses another challenge at MAC.

In summary, PHY and MAC differ in their data- and control-flow
operations: (1) PHY is heavy in data flow processing but lightweight
in control flow; in contrast, MAC needs complex control but is light-
weight in data processing; (2) PHY typically uses simple pipeline

stages for data processing, whereas MAC needs complex branch
instructions to perform event handling; (3) PHY is dominated by
processing latency, whereas MAC is sensitive to timing.

2.2 A Reference Design
Given the diverse requirements by PHY and MAC, people have
explored different architectural techniques. In this section, we in-
clude them in a simple reference system. The goal is to (in)validate
whether these existing ideas [22, 26, 33, 40] are effective to meet
the latency requirements from 802.11ac.

Our reference design is for the 802.11ac SISO mode of Figure 1.
At PHY, we use the pipelined modules, which all use a single global
clock. Therefore, they form a single clock domain. This is the most
popular technique used [22, 26, 40]. Moreover, processing is frame
based. The entire frame traverses all pipeline stages. This is another
popular technique reported by [22, 26, 33, 40].

At MAC, the reference uses the embedded processor based ar-
chitecture. The processor handles all related event processing, in-
cluding backoff, collision handling, timing control (SIFS, DIFS, etc.).
More details on the reference are in §7.

2.3 Latency Performance
We next present the latency-related measurement results on the
reference design. The 802.11ac standards [6] mandate the air trans-
mission time for PHY, and SIFS between DATA and ACK frames.
SIFS thus accounts for latency in both MAC and PHY. These tim-
ing requirements pose challenges to both PHY and MAC designs.
Our experimental results show that, current reference SDR design
cannot meet the stipulated timing requirements.
PHY. We test the 802.11ac prototype operating at 80MHz chan-
nel width, using 64-QAM at 3/4 rate, for both the transmitter (Tx)
and the receiver (Rx). Tx works at the maximum clock frequency
90MHz, and Rx at the maximum clock frequency 45MHz. We
record the latency and the processing time for each frame. The
latency is defined as the duration from the time the first incoming
bit is received to the instant this first bit is processed and sent out.
The processing delay is defined as the time it takes to process a
whole frame.

The results are shown in Table 1. We make two observations.
First, long latency is observed at the Rx side. It takes 48.01 µs for
the first bit to be processed. However, latency at Tx is much shorter.
Second, PHY receiver cannot meet the air transmission time dead-
line. Under 80MHz channel, the air transmission time for a 100 B
frame takes 44 µs, while a 1500 B frame (the maximum transmission
unit size, MTU) takes 88 µs. To continuously process the stream of
incoming frames, the PHY Rx should process each frame at least
faster than the air transmission time plus SIFS. However, neither
(1500 B) MTU-sized frame nor larger aggregated frame can catch up
with the incoming speed. The (100 B) frame reception seems fine.
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Reference Design PHY MAC

Tx Rx Tx Rx
100 B:

Latency 2.98 µs 48.01 µs 613 µs 604 µs
Proc. timea 23.85 µs 57.91 µs 615 µs 605 µs

1500 B:
Latency 2.98 µs 48.01 µs 8938 µs 8929 µs
Proc. timeb 44.88 µs 195.52 µs 8954 µs 8938 µs

a PHY air transmission time for 100 B is 44 µs.
b PHY air transmission time for 1500 B is 88 µs.

Table 1: Timing performance for the reference design.

However, when sending ACK to the sender (that needs 2.98 µs to
prepare the first bit at PHY), the receiver does not have any budget
left for its MAC (57.91 µs + 2.98 µs > 44 µs + 16 µs).
MAC. We show that the reference MAC, which relies on the em-
bedded processor for processing, cannot meet the timing deadline.
We test the CSMA/CA MAC using the MicroBlaze processor. We
record the latency and the processing time for each frame at the
MAC layer (Table 1).

We first observe long latency at both Tx and Rx. It takes more
than 613 µs for the first byte to be processed for the small frame,
and nearly 8938 µs for the MTU-sized frame. Second, SIFS timing
cannot be met. MAC and PHY together substantially exceed SIFS
(18.68 µs + 604 µs + 2.98 µs + 1 µs = 626.66 µs > 16 µs, details in §8).
Furthermore, MAC alone contributes at least 604 µs. We thus make
a case for exploring new architectural ideas for low-latency SDR.

3 ARCHITECTURE
In this section, we describe the architecture of Tick. Tick seeks to
achieve low latency in SDR by applying hardware and software
co-design techniques.

3.1 Components
We next introduce the main components in Tick.
Hardware Components. Tick uses two hardware components
in its architecture: an FPGA board for PHY and MAC, and a com-
modity wide-band RF board. The FPGA-based prototyping offers
maximum flexibility to explore hardware and software co-design
ideas. The RF front-end offers a well-defined interface between dig-
ital and analog. It contains A/D, D/A, etc. It further supports single
or multiple antennas, which enables SISO and MIMO operations.

Tick has two communication interfaces. One is between the host
computer and FGPA using USB 3.0 or PCIe. The other is from the
vendor’s FMC interface to connect PHY and RF in low latency.
Software Components. The software stack in Tick provides
the programming support and systems services for implementing
various PHY and MAC protocols (Figure 3). The communication
module facilitates massive data exchanges with the upper-layer
IP protocol and the RF unit. Moreover, Tick provides a number of
techniques to greatly improve the programmability and latency
performance of PHY and MAC processing. To this end, the PHY
and MAC libraries offer commonly used functions. The PHY and
MAC runtime support allows for users to code, compile, and run
their customized functions at ease.

Figure 3: Tick software stack.

Figure 4: An element in Tick.

3.2 Programming Tick
To write a complete SDR system with both PHY and MAC, Tick
provides a simple programming abstraction of “a graph of elements”.
A new wireless design is configured as a directed graph of elements.
An element is the basic unit for modular programming in Tick. Each
element represents a processing unit or function. All processing
actions performed inside a function are encapsulated in an element.
The edge, or connection, between two elements represents the route
for message transfer from one element to the other. Therefore, the
graph resembles the flowchart, with connections denoting message
flow, and elements being actual objects that process messages.

Each element can have at most four components (Figure 4):
the input and output ports, the processing engine (PE), the stor-
age/memory unit, and the configurations. Ports are the endpoints
of connections between elements, and each element can have a
small number of ports for input and output. Messages are passed
among elements via ports. PE implements the computation and
processing needed by the element. The storage unit buffers the data
or control information. Configurations enable us to set parameters
and configurations for an element.

Elements are connected via ports. The connection is unidirec-
tional. Each output port of an upstream element is thus connected
to the input port of a downstream element. For simplicity, each port
is only allowed for connect once. To offer flexibility, Tick provides
special elements of multiplexer and demultiplexer for input merge
and output split. In addition, an element without an input port is
called a source, while an element without an outport port is a sink.

The embedded processor operates at the MAC layer only.
It handles MAC event processing, offloads processing-heavy or
communication-intensive tasks to MAC accelerators (a special class
of elements to be elaborated next), and provides control and config-
urations on accelerators. However, it does not process MAC data
frame directly.

Tick lets programmers use the standard XML language to per-
form several tasks for an element: connection of elements, mem-
ory/storage size, and parameters of interest. The coding of PE can
be in high-level programming language HLS (High-Level Synthesis)
C++ or in low-level language Verilog for FPGA.

Programming PHY is to write each PHY element in HLS C++ or
Verilog, and interconnects them to form the pipeline. Users can use
either XML file or our IDE (its GUI similar to GNU Radio) to specify
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crc.output.0 
(32bit)

bcc.input.0

Figure 5: A toy example using Tick.

Program Snippet 1 Defining a BCC Encoder element
<name>bcc</name>
<input> <id>0</id> <width>32</width> </input>
<output> <id>0</id> <width>64</width> </output>
<configuration> <name>rate</name> <width>16</width> </configuration>

Program Snippet 2 Interconnecting MAC and PHY elements
<!-- interconnect elements in PHY -->
<connect>

<port>bcc.output.0</port>
<port>constellation.input.0</port>

</connect>
<!-- interconnection between MAC CRC and PHY BCC -->
<connect>

<port>crc.output.0</port>
<port>bcc.input.0</port>

</connect>

the configuration for interconnetion. Programming MAC needs to
work with both the embedded processor and accelerators. Coding
the embedded processor using API is straightforward (details in §7).
Users write event-handling programs for MAC in C. An accelerator
is also a special class of element. Programming it can be in HLS C++
or Verilog. Users can call common and systems accelerators (e.g.,
CRC, random backoff, timer). The configurations for accelerators
are also via XML.
An Illustrative Example. We use a toy example (Figure 5) to
show how to program the MAC and PHY chain. Assume the user
builds a simple SDR transmitter, which has the following functions:
if not in MAC backoff, the sender starts CRC computation and sends
the frame to PHY, which has two pipeline stages of BCC encoding
and constellation mapping.

The MAC layer in the resulting design consists of the embedded
processor, a CRC accelerator, and a Backoff accelerator; The PHY
layer has a BCC Encoder element and a Constellation element.
Given this model, the user needs to take three steps.

First, the user populates elements using the template provided
by Tick. It is done by defining input, output and configuration
for the element. Program Snippet 1 shows the definition for the
BCC Encoder. It defines the element name, input, output and one
parameter (rate). The data widths are defined accordingly. Tick
will automatically generate the corresponding Verilog module code,
while the user uses either Verilog or HLS C++ to code the PE. The
Constellation, CRC, and Backoff elements are defined similarly.

Second, the user interconnects the elements to make a working
pipeline. It is also done using XML, as shown in Program Snippet 2.
Note that all MAC accelerators are connected to the embedded
processor by default.

Finally, the user implements proper MAC event-handling branch
instructions within the processor. It thus interacts with each accel-
erator via reading and writing to corresponding registers (called
CSR) through API, as shown in Program Snippet 3.

Program Snippet 3 MAC processor control logic
Reg_interrupt(INT_BackoffDone, handle_backoff); // register a Backoff
Write_CSR(backoffReqAddr, 1); // start Backoff
Write_CSR(crcReqAddr, 1); // calculate CRC

void handle_backoff() { // backoff interruption handler routine
Write_CSR(backoffReqAddr, 0); // reset Backoff
Write_CSR(sendToPHYReqAddr, 1); // send out CRC

}

4 DESIGN OVERVIEW
In this section, we provide a design overview for Tick.

4.1 Design for Programmability
Tick supports high programmability at both PHY and MAC. The
overall idea is to carefully instrument an element, so that it balances
latency performance and modular design.
PHY. Proper design of PHY elements enables a user to readily
program PHY via the pipelined operation of such elements.

A PHY element uses its input/out ports to separate data flow
(message passing) from control flow (configurations, or dynamic
parameters such as frame size for the current frame). Each port
needs to specify its bit-width (i.e., how much bits are needed). Con-
trol flow uses a small number of bits, and can be stored internally
using the shadow control and status registers (CSRs). They shadow
the CSRs from a special PHY accelerator, which passes information
between MAC and PHY; see Figure 6 for an illustration.

Data flow needs a large number of bits. They are transferred
between two connected elements via asynchronous FIFO (aFIFO).
aFIFO provides the data queue for an upstream element and a
downstream one; see Figure 7 for an illustration. It can also be
viewed as a special element, which the user does not need to be
aware of. It is automatically generated between elements by Tick’s
runtime support.

Each PHY element has a special configuration parameter, i.e.,
its operating clock. This parameter enables multi-clock-domain
pipeline, as elaborated in §5.
MAC. The embedded processor commands the control flow and
configurations for accelerators. However, it does not process data
messages directly. Accelerators offload computing, communication,
and timing tasks from the processor. They directly work with data
messages. Data are passed among involved accelerators via DMA,
thus bypassing the processor.

An accelerator is a special class of element. It has all four compo-
nents of an element. Each accelerator can also run on its own local
clock. The embedded processor is a general-purpose processor, and
we use MicroBlaze in our prototype. By default configuration, all
accelerators are connected to the processor.
Passing Information between MAC and PHY. MAC and
PHY need to pass critical information at runtime for efficient pro-
cessing, e.g., current frame size. This is done by implementing an
accelerator element in Tick. Therefore, the processor operates at the
MAC layer only, but uses the special accelerator to pass information
between MAC and PHY.

4.2 Design for Low Latency
Tick explores several software and hardware co-design techniques,
to reduce latency and sustain high processing throughput. At PHY,
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Figure 6: Control flow for both MAC and PHY in Tick.

two ideas are applied. First, multi-clock-domain pipelining (MCDP)
lets each element on the pipeline operates with its separately gen-
erated clock. This greatly simplifies the global clock distribution,
which is quite challenging to realize for ultra-high-speed PHY pro-
cessing. Second, we apply field-based, rather than frame-based,
processing to further reduce latency. It can customize the process-
ing pipeline for different fields of the PHY frame. No all fields need
to traverse the entire pipeline, thus reducing overall latency.

At MAC, we propose the accelerator-rich, embedded processor-
aided design. It efficiently handles various events while meeting
the timing deadline defined in tens of microseconds (e.g., SIFS) in
modern wireless systems.

4.3 Aiming at the Best of Both Worlds
Tick is designed to be easily programmable and readily extendable,
while simultaneously ensuring low latency. It differs from all exist-
ing SDR platforms, which do not aim to achieve both goals. Take the
popular WARP system as an example. On one hand, the hardware-
centric design by WARP (say, 802.11n) can meet the SIFS/DIFS
timing requirements [36]. However, such fine-tuned, carefully in-
strumented designs tightly couple the PHY function blocks at the
cost of easy programmability. Modification would not be easy, if
impossible at all, without precise estimation on the entire signal
processing flow. On the other hand, WARP offers a highly pro-
grammable option for PHY via WARPLab. However, WARPLab
cannot meet the stringent 802.11 timing requirement, as concurred
by several independent studies [21, 37, 37, 39, 41]. Consequently, it
is even more challenging, if not feasible at all, to extend the current
802.11n design to the next-generation 802.11ac family.

Tick overcomes this dilemma by aiming at both goals. It intro-
duces aFIFO to enable multiple-clock-domain pipeline (details in §5).
Each aFIFO does incur small latency, which is, however, offset by
the benefits gained from loosely-coupled modules and flexibilities
to update anyone. Moreover, field-based processing significantly
reduces the efforts to bypass bottleneck modules, e.g., IFFT. In con-
trast, a hardwired SDR design saves little on the aFIFO-incurred
latency between modules, but results in high cost on diminished
flexibility, extendability, and programmability.

We next elaborate on the design details in §5 and §6.

Figure 7: Multi-clock-domain pipeline (MCDP) in PHY.

5 MINIMIZING LATENCY AT PHY
We now describe the two techniques at PHY: multi-clock-domain
pipeline and field-based pipeline processing.

5.1 Multi-Clock-Domain Pipeline (MCDP)
The first technique is multi-clock-domain pipeline (MCDP) [28, 30]
of elements (Figure 7). In a nutshell, MCDP uses a globally-
asynchronous, locally-synchronous clocking style [20]. Each el-
ement operates with its clock. Multiple adjacent elements can use
the same clock to form a domain. Synchronous design can be used
in each domain. Finally, all elements are interconnected to form the
cross-domain PHY pipeline.

The choice of MCDP is motivated by the SDR PHY. First, it
accommodates the diversity in computing workload of different
elements at PHY. Second, it enables to customize the PHY pipeline
stages to the operation demands of individual elements. Third, it
offers better modular design at PHY. The design of each domain is
no longer constrained. It can optimize the tradeoffs among clock
speed, latency, and exploitation of element-level parallelism.

Our experience shows that, MCDP is not very effective at the
transmitter of 802.11ac (Figure 1). This is because the IFFT module
poses as the single processing bottleneck; adjusting clocks at other
modules does not lead to sizable latency reduction. However, MCDP
is quite effective at the receiver. The elements of Viterbi Decoder,
FFT, and Time Synchronization all pose as processing bottlenecks.
Using local clocks helps to adjust and match the bottleneck speeds.

We need to address three issues for MCDP: (1) How to enable
message passing among elements across domains? (2) How to fur-
ther reduce the latency overhead due to too many domains? (3)
How to reduce latency when MAC exchanges information with
PHY elements in different clock domains? We next elaborate on
our solution to each.
Asynchronous FIFO for Inter-Domain Communication.
Inter-domain communications in MCDP use explicit message-
passing channels to communicate messages between elements in
different domains.

In this work, we leverage the low-latency aFIFO for asynchro-
nous communication across domains [10]. The design uses full and
empty signals to indicate the occupancy of the FIFO. The empty
and full signals are generated by FIFO itself. The empty signal
is synchronized to the consumer’s clock, while the full signal is
synchronized to the producer’s clock.
Grouping to Reduce Clock Domains. Inter-domain synchro-
nization via aFIFO increases the number of clock cycles in MCDP.
The issue becomes severe, if each element runs at its own clock and
many aFIFOs are used.

Our solution gathers multiple adjacent elements together to form
a group. Elements in a group operate at the same clock. This way, we
can reduce the number of aFIFOs. Grouping balances the tradeoff
among processing capability of each element, the communication
delay due to aFIFO, and the number of pipeline bottlenecks.
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Figure 8: Field-based processing in 802.11ac PHY.

We automate the process of grouping elements. We compute the
overall latency with grouping (i.e., reduced aFIFO but increased
latency at elements in a group) and without grouping (minimal
latency at each element but increased latency due to more aFIFOs).
Whenever the grouped latency is smaller, we merge the element to
the group; otherwise, we start a new group for the element.
Latency on PHY and MAC Interactions. We exploit shadow
registers for efficient information exchange between PHY andMAC.
The shadow register design provides the ability to load or shadow
the contents of a primary CSR into a shadow CSR at the completion
of a stored instruction. This is accomplished in 6 to 8 clock cycles
(far below 1 µs given our clock frequency), with all registers being
shadowed. We defer the discussion of CSRs to §6.

5.2 Field-Based Pipeline Processing
The next technique is to exploit the field-based, rather than frame-
based, pipeline at PHY. Given the different fields of PHY data, we
customize the pipeline (both which stages and the number of stages)
to speed up computation. Therefore, only the data will go through
the entire pipeline, while other PHY fields (headers and signals) only
traverse a portion of the pipeline stages. We apply this technique
at both the transmitter and the receiver of software radio.

The field-based pipelining is based on the observation that dif-
ferent fields play different roles at PHY processing. For example,
the long/short training fields are used for channel estimation and
training purpose only, and the content of these bits is not needed.
Therefore, they do not need to traverse all stages of the entire
pipeline. Instead, they can bypass certain stages, thus reducing
latency. Moreover, this further enables concurrent processing along
different parallel paths for different fields, contributing to further
latency optimization. Figure 8 illustrates an example.
Customized Pipeline Stages for Fields. We apply domain
knowledge to customize the pipeline at both Tx and Rx.

Take 802.11ac SISO of Figure 8 as an example. Note that PHY
in many other wireless technologies share similar features. At
the transmitter, both long and short training sequences enter the
pipeline from IFFT, signals enter from the BCC encoder, but data
will traverse the entire pipeline starting from the Scrambler. At the
receiver, the short training sequence exits the pipeline after the
Frequency-offset element, while the long training sequence exits
after Channel-estimation. The signals exit after the Viterbi-decoder
element, while the data go through the entire pipeline.
Control Flow for Fields. Compared with frame-based process-
ing, field-based pipeline reduces processing latency but at the cost
of finer-grained control flow at the field (but not the frame) level.
The specific control information to enable field-based pipelining
includes: how many fields in the frame, the order of fields, the start-
ing point of a field and the field length, and the modulation type
for each field.

To facilitate field-based processing, Tick automates the gener-
ation of control flow for fields. To this end, a user only needs to

Figure 9: MAC layer accelerators architecture.

fill in the configuration table for PHY fields. Such configuration
parameters are passed to each related element. The customized
pipeline can then be constructed for each field of the PHY frame.

6 DESIGN FOR LOW-LATENCY MAC
We now describe our efforts to reduce MAC latency. Following the
industry practice, we first split MAC functions into two portions.
The high MAC implements functions of accepting frames from
higher-layer IP modules, adding frame headers, and handling man-
agement frames (beacons, etc.). It is non-time-critical, thus being
implemented in the device driver on the host computer. The low
MAC copes with timing-critical functions; this is the focus here.

We adopt the accelerator-rich design [11, 24], aided by an em-
bedded processor (Figure 9). The processor is definitely needed, to
preserve programmability on event-based handling at MAC. How-
ever, as we have seen in §2.3, the embedded processor only design
cannot ensure low latency. Offloading computation-intensive tasks
from the processor does help to reduce latency. However, it is not
sufficient. We further explore the idea of decoupling control and
data flows as elaborated next.
Decoupling Control and Data Flows. We separate the control
and data flows at the MAC layer. The control-flow communication
between the processor and an accelerator is done by read and write
operations on CSRs. The embedded processor works with the global
CSRs only via the FSL (Fast Simplex Link) interface, while each
accelerator retains a copy of shadow CSRs locally. See Figure 6
for an illustration. For a control register (CR) within CSRs, the
embedded processor performs write operation only, whereas the
accelerator executes read operation only. In contrast, given a status
register (SR), the processor performs read operation only, while the
accelerator runs write operation only. Given the separation of CRs
and SRs, no read/write conflicts are possible for the control flow
between the processor and each accelerator. Given the low volume
of control flow, no sizable latency is observed.

Figure 6 further shows that, we have three levels of CSRs. The
local CSRs at each accelerator shadow the global CSRs, and the
CSRs at any PHY element further shadows the CSRs at the PHY
accelerator (that handles information passing between MAC and
PHY layers).

As illustrated in Figure 9, data flow among accelerators lever-
ages the memory unit in each accelerator. Message exchanges are
pipelined between communicating accelerators. While the data is
read from the memory of the previous accelerator, data are concur-
rently written into the next accelerator. Therefore, the accelerator
is not blocked in processing by the massive data exchanges via
DMA. When accelerators use multi-clock domains, data exchange
can also be done via the asynchronous FIFOs.
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Program Snippet 4 Tick API for low MAC
// write value to the control register
void Write_CSR(unsigned int addr, unsigned int val);

// return value stored in the status register
int Read_CSR(unsigned int addr);

7 IMPLEMENTATION
We first present Tick’s baseline implementation, and then provide
more details on PHY, MAC and other issues.
Prototype Environment. We prototype Tick with both PHY
and low MAC, with the 802.11ac [6] SISO as our base implemen-
tation. It is done on the Xilinx Kintex-7 FPGA KC705 Evaluation
Kit [38]. The embedded processor is MicroBlaze. The interfaces
between host computer and the FPGA board include both USB 3.0
(converted by CYUSB3KIT-003 explorer kit [14, 15] to FMC inter-
face) and PCIe [17, 18]. We select a commodity RF board using
AD9371 [1] with the FMC interface. The RF front-end is capable
of transmitting and receiving two 80MHz channels within the fre-
quency range from 300MHz to 6GHz. Figure 10 shows the Tick
system (without the host computer).

The Tick library is programmed on Ubuntu 14.04. Our imple-
mentation results in 18 098 lines-of-code (LoC) in Verilog for PHY
(8267 LoC for PHY Tx, 9831 LoC for PHY Rx), and 214 LoC in XML
(96 LoC for connection and 118 for module definition. The MAC
consists of 7412 LoC in Verilog HDL for accelerators, and another
2034 LoC in C for the embedded processor logic. To support con-
nectivity and programmability, the Tick library has 4226 lines of
driver code in C to communicate with the host driver and 1253 LoC
in Python for the XML parser.
Runtime Support. Tick is offered as a standalone library to
users. In PHY modules, Tick provides 28 standard elements written
in Verilog to support 802.11a/g [5], 802.11n [5] and 802.11ac [6]
protocols. They follow algorithms/specifications from the wire-
less standards. For example, we provide FFT-64, FFT-128, FFT-256,
Viterbi Decoder, and Channel Estimation elements. In MAC mod-
ules, Tick provides 12 accelerators to support programmable MAC,
including CRC-32, Backoff, Global Timer, communication accelera-
tors that interact with PHY, RF and host computer, etc.

As a result, programmers only need to use XML configuration
files to call PHY elements/MAC accelerators from the Tick library
and interconnect them, similar to Program Snippet 2.We implement
an XML parser in Python to convert user-defined configurations
into Verilog HDL code for the elements/accelerators. Users can use
Vivado Logic Analyzer provided by Xilinx to debug their imple-
mentation.
API. Tick provides two levels of APIs, one for low MAC and
the other for host control logic. The API for low MAC controls ele-
ment/accelerator via CSR, as Program Snippet 4 shows two example
cases. The API for host-level control has three aspects, including
API for data (e.g., send data frames from host to MAC using DMA),
API for interrupts (e.g., register an interrupt at host), and API for
control (e.g., get/set config parameters).

7.1 PHY Issues
Implementing an Element. In addition to the default PHY
elements provided by current Tick, users can readily customize

(MHz) Scrambler BCC Puncture Interleaver Constellation Insert IFFT GI

Max 500 600 600 430 650 460 90 430
Tick 500 500 500 400 500 400 90 400

(a) PHY Tx
(MHz) Time Freq. GI FFT Channel Phase Decons- Deint- Depunc- Viterbi Descr-

sync. offset est. tell. leaver turer ambler

Max 45 120 710 100 340 460 420 460 510 170 710
Tick 45 100 500 100 333 333 333 333 500 167 510

(b) PHY Rx
Table 2: Working frequencies for Tick-PHY using MCDP.

their own ones. They can create a template in XML, fill in the
various parameters, and write PE in Verilog or HLS C++.
Choosing Clock Frequencies for MCDP. We implement
MCDP by providing maximum clock frequency that each element
can run on the given FPGA board. Due to FPGA resource and layout
constraints, the working clock frequency may not reach the ideal
maximum value. The clock frequencies Tick used on our FPGA
board are listed in Table 2.
Eliminating Jitter Incurred by aFIFO. Another challenge
comes from the strict timing requirement to send a frame over
the air. For example, full-duplex system must be aligned for each
I/Q sample [4, 8, 12, 21]. However, the aFIFO between elements
introduces an uncertain latency jitter, which can be up to ± 0.15 µs.
We eliminate this jitter in Tick by leveraging the global clock timer
provided by MAC. Jitter-sensitive aFIFOs will fetch a timestamp
from the global clock when the data can be sent out. The jitter is
thus cancelled since the aFIFO’s sending times are aligned.
Grouping Elements to Avoid Resource Overuse. Due to the
clock resource constraint, the user may not use a separate clock for
every element. Tick automatically analyzes adjacent elements to
determine whether they should be grouped together. The elements
in the same group use the same clock.
Handling Field-Based Processing. The field-based process-
ing follows the configuration table specified by users. Such a table
is two-dimensional, specifying field length and how it should be
processed by each element. Next, our XML parser automatically
generates a corresponding table in FPGA and creates shadow reg-
isters in each element. The element works immediately, once the
corresponding field of incoming data is ready.

A challenge is to guarantee correct ordering. We adopt the “stop-
and-wait” strategy in processing fields. The configuration table also
regulates the field order. The later fields must wait until the early
fields have been processed.

7.2 MAC Issues
Global Controller via CSRs. In our accelerator-rich architec-
ture, the embedded processor controls each accelerator via CSRs.
To provide scalable control over multiple accelerators, we define
shared control registers in the global CSRs. The shared control regis-
ters can be read by multiple accelerators, so that global parameters
can be distributed efficiently.

The control-flow latency mainly comes from the delay of read-
ing/writing a register, which costs 5 to 6 clock cycles. We reduce
such latency between embedded processor and CSR to 2 to 3 clock
cycles, by reading/writing to consecutive addresses. Taking the
latency caused by aFIFO between global CSR and shadow CSR into
consideration (6 to 8 clock cycles). The entire control-flow latency

Paper Session III: Invisible Cobwebs MobiCom’17, October 16-20, 2017, Snowbird, UT, USA

107



MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA H. Wu et al.

between embedded processor and CSR in Tick is 11 to 14 clock
cycles.
Implementing Accelerators. We implement four types of ac-
celerators in MAC: computation-intensive accelerators (e.g., CRC
checksum), timing-critical accelerators (e.g., Backoff), interface
processing accelerators (e.g., interact with Host/PHY layer), and
accelerators for grouped small modules (e.g., assemble ACK).

1. Computation-intensive accelerators. We offload computation-
ally intensive CRC checksum in Tick to accelerators, so that the
processor does not get stuck in fetching large data.

2. Timing-critical accelerators. We provide timing-related ac-
celerators with access to a shared global clock and timestamp. For
the processor, Tick uses a dedicated bus to reduce the latency of
reading the timer value. Such a timing control mechanism avoids
the significant delay and timing errors if reading the clock from the
register.

The timeout notification from one accelerator to another is done
through timestamp passing. The source accelerator first increments
the global timer value it reads to the expected timeout value, and
passes it to the processor as a timestamp. The processor then passes
the timestamp to the timeout accelerator. Finally, when the timeout
accelerator counts to the expected timestamp, it starts to alarm an
event. The clock calibration unit in each time-related accelerator is
also implemented using timestamp passing. It computes the latency
offset based on the value it reads.

3. Interface processing accelerators. We next implement the
accelerator for communicating with the host and with PHY. The
host accelerator prefetches data from the host computer. It thus
needs large memory to buffer data, and Tick sets eight frames as
its buffer memory size. We also implement the PHY accelerator to
provide isolation and control at the MAC layer. It communicates
with the CSRs in each PHY element.

4. Accelerator for grouped small elements. Finally we use an
accelerator for grouped small elements to reduce control overhead.
Due to their relatively simple logic, one accelerator suffices to
handle. We put assemble ACK, frame check, set retry bit into this
accelerator in Tick.

7.3 Other Issues
Choosing Interface between RF and PHY Boards. Different
RF boards introduce different latencies because they use different
interfaces. For example, USRP N210 [16] uses the Ethernet inter-
face, which incurs over 10 µs delay due to the Ethernet protocol.
Therefore, we choose AD9371 [1] that adopts the FMC interface (a
low-latency parallel data bus).
Choosing Interface between Host and MAC Board. Differ-
ent interfaces between host and MAC introduce different latency.
We have considered both PCIe and USB 3.0; they both provide suffi-
cient throughput to 802.11. Our experiment shows that, the average
latency of the PCIe interface (15.76 µs) is lower than that of USB 3.0
(53.25 µs). Since we implement a host accelerator which prefetches
data from the host, the latency effect is offset. We thus choose USB
3.0, which is more accessible for laptops or even tablet PCs.
Dual-Interface Driver. We implement two interfaces when de-
veloping the Tick driver at the host, one to the user space and the
other to the TCP/IP stack. The user-space interface provides direct

Tick PHY Tx PHY Rx

SISO:
Latency 1.86 µs 21.62 µs

Proc. time 21.26 µs 24.32 µs
MIMO:

Latency 1.85 µs 23.57 µs
Proc. time 23.14 µs 26.28 µs

(a) 100 B

Tick PHY Tx PHY Rx

SISO:
Latency 1.86 µs 21.62 µs

Proc. time 42.07 µs 61.85 µs
MIMO:

Latency 1.85 µs 23.57 µs
Proc. time 32.56 µs 43.55 µs

(b) 1500 B
Table 3: PHY latency and processing time of Tick 802.11ac.

access to FPGA at the user space for debugging. The network inter-
face connects to the host’s mac80211 interface (link-layer driver)
in the kernel, so that the Tick can be used as an 802.11 device.

8 EVALUATION
We first demonstrate that Tick achieves low-latency using bench-
marks on PHY (§8.1), MAC (§8.2) and software and hardware inter-
faces (§8.3). Next, we assess the overall performance of Tick with
latency, throughput, correctness, resource consumption, coding
effort and comparison with state-of-the-art SDRs (§8.4). In this
section, we mainly use 802.11ac SISO. More assessment of Tick’s
extension for two case studies of 802.11ac MIMO and full duplex is
presented in §9.

8.1 PHY
We implement and evaluate Tick-PHY design using the same con-
figuration as the reference 802.11ac SISO design (§2). We have 9
elements in PHY Tx and 11 elements in PHY Rx. Our PHY imple-
mentation uses 64-QAM at 3/4 rate operating over 80MHz channel
for both Tx and Rx. We test two frame sizes: 100 B and 1500 B.
MCDP Performance. We first gauge MDCP performance at
PHY. With MCDP, the overall latency and the processing time are
reduced for both Tx and Rx at PHY (see SISO in Table 3).

For PHY Rx, the latency decreases from 48.01 µs (reference de-
sign in §2) to 21.62 µs, about 2.2× reduction. Note that, this latency
remains identical for both frame sizes, because it takes the same
amount of time for the first bit to be received and processed. Tick re-
duces processing time using MCDP as well. For small frame (100 B),
the processing time decreases from 57.91 µs to 24.32 µs, 2.4× re-
duction. The reduction is even greater for the MTU frame (1500 B),
from 195.52 µs to 61.85 µs (3.2× reduction).

For PHY Tx, Tick drops the latency from 2.98 µs to 2.49 µs (1.2×
reduction). For small frames, the processing time changes from
23.85 µs to 21.89 µs (1.1× reduction). For MTU-sized frames, the
processing time reduces from 44.88 µs to 42.70 µs (1.1× reduction).
MCDP Latency Reduction Analysis. The latency reduction
achieved by MCDP is mainly through clock frequency speed up
on elements. Specifically, there are three bottleneck elements in
PHY Rx: time synchronization, FFT and Viterbi decoder, whose
processing clock cycles are an-order-of-magnitude more than other
elements. In the reference design, all three work at the lowest
frequency (45MHz). Using Tick, clock frequency for FFT is 100MHz
(2.2× speedup), and Viterbi decoder uses 167MHz (3.7× speedup),
as shown in Table 2b. For PHY Tx, latency reduction is also achieved
through clock frequency speed up. However, PHY TX only has a
single bottleneck in IFFT. Therefore, latency reduction at Tx is not
as much as at Rx.
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Figure 10: Tick system (w/o
host computer).
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Figure 11: Field-based pro-
cessing reduces latency (PHY
Tx).

Tick MAC Tx MAC Rx

Latency 17 µs 3 µs
Proc. time 18 µs 4 µs

(a) 100 B

Tick MAC Tx MAC Rx

Latency 18 µs 3 µs
Proc. time 34 µs 19 µs

(b) 1500 B
Table 4: MAC latency and processing time w/ accelerators.

Field-Based Processing. Field-based processing further re-
duces latency over frame-based processing. We test both SCDP and
MCDP in Tick. Figure 11 shows that, using field-based processing,
the latency reduction is 0.97 µs (2.98 µs to 2.01 µs) for SCDP design.
For MCDP, it reduces 0.63 µs (2.49 µs to 1.86 µs) for latency. The
latency reduction is the same for both frame sizes.
Field-Based Processing Latency Reduction Analysis. In
802.11ac, field-based processing can start only as early as IFFT.
The latency of the upstream elements is thus reduced. In 802.11ac,
the reduced latency is visible but not significant. This is because
IFFT, being the main latency contributor, is not skipped. Other
802.11 variants, e.g., 802.11a/g, may observe larger reduction by
applying field-based processing, if the latency bottleneck element
can be skipped. To meet the stringent SIFS timing requirement, ev-
ery latency reduction factor matters. As an optimization technique,
field-based processing further pushes latency reduction at PHY to
the limit.

8.2 MAC
Accelerator-Based Latency Reduction. With the accelerator-
based MAC architecture, Tick successfully reduces latency by more
than two orders of magnitude. Table 4 summarizes the results.

For the Rx chain, the overall latency drops from 604 µs to 3 µs
(201× reduction) for a small frame (100 B). Tick achieves 151× re-
duction (from 605 µs to 4 µs) in processing a complete frame. For
MTU frame (1500 B), the overall latency reduction is 2976×, from
8929 µs to 3 µs. The processing time decreases from 8938 µs to 19 µs
(470× reduction) in processing a full frame.

On the Tx chain for small frame (100 B), the overall latency drops
from 613 µs to 17 µs (36× reduction); the processing time for a full
frame drops from 615 µs to 18 µs (34× reduction). For MTU frame
(1500 B), the overall latency decreases 497×, from 8938 µs to 18 µs.
The processing delay for a full frame changes from 8954 µs to 34 µs
(263× reduction).
Latency Reduction Analysis. The accelerator-rich architec-
ture of Tick, which supports and coordinates multiple accelerators,
is also the key enabler for low latency. Table 5 shows the latency
breakdown for the reference design (§2). For both Tx and Rx, the
latency has five factors: (L1) control flow latency at the interface
between MAC and host (Tx)/PHY (Rx); (L2) processing time on the
MAC frame header in the processor; (L3) the time to load data to
the processor via DMA; (L4) the time to compute CRC checksum in

Latency Breakdown Tx Rx

100 B 1500 B 100 B 1500 B
L1. Control information to MAC 12 µs 12 µs <1 µs <1 µs
L2. Frame header processing 10 µs 10 µs 12 µs 12 µs
L3. DMA data to processor 31 µs 447 µs 32 µs 448 µs
L4. CRC checksum calculation 560 µs 8469 µs 560 µs 8469 µs
L5. Transfer to PHY(Tx)/Host (Rx) 2 µs 16 µs 1 µs 15 µs

Table 5: MAC latency breakdown of the reference design.

the processor; and (L5) the time to send the frame to PHY (Tx), or
to the host (Rx) . Among them, L1 and L5 are necessary overheads
to control MAC and send data to the next stage. Tick does not effec-
tively reduce these two factors. However, the two accelerators we
implemented in Tick reduce L2, L3, and L4, effectively. The frame
header accelerator modifies/checkes the header for data frame
and reduces L2. The CRC accelerator offloads calculation from the
processor, thus reducing the latency for L3 and L4.

In the reference design, L2, L3, and L4 together form the major
latency bottleneck (at least 600 µs for the small frame and 8900 µs
for the MTU-sized frame). Using accelerators, Tick reduces them to
<6 µs for Tx and <3 µs for Rx (compared with Table 4). Note that, ad
hoc design practice which accelerates CRC or frame header alone,
still cannot meet the SIFS timing requirement.

8.3 Software and Hardware Co-design
LatencyOverhead. The interfaces betweenMAC and PHY, PHY
and RF front-end are two factors contributing to potentially large
latency overhead. However, neither is an issue in Tick. The latency
between PHY and MAC comes from aFIFO, which takes 6 to 8 clock
cycles to feed the data from MAC to PHY. Under the maximum
clock frequency (100MHz) that aFIFO runs, it takes less than 0.08 µs
for PHY to receive a data bit sent from MAC. For the AD9371 RF
board, the latency at the RF front-end is less than 1 µs.

Note that, the interface between the host and FPGA also incurs
communication latency. However, it does not affect timing-critical
functions at MAC (e.g., DIFS, backoff, SIFS), because we implement
a host accelerator, which prefetches data from the host. To sup-
port sufficient throughput for 802.11, both PCIe (15.76 µs latency
on average) and USB 3.0 (53.25 µs latency on average) are viable
choices.
SIFS Timing Requirement. The time interval between the
DATA frame and an ACK frame should be smaller than SIFS. This
interval consists of four components: (a) the delay at PHY Rx, from
receiving the last frame sample at RF, to delivering the last byte
of the frame to MAC; (b) the delay at MAC, from receiving the
last byte from PHY Rx, to delivering the first byte of ACK to PHY
Tx, after MAC finishes all Rx and Tx processing; (c) the delay at
PHY Tx, from receiving the first byte of ACK from MAC to sending
its first sample to RF; and (d) the communication delay, including
PHY-MAC interface delay and the RF delay.

Following the above breakdown analysis, we show that, soft-
ware and hardware co-design of Tick meets the SIFS timing require-
ment. We make three observations. First, the latency in Tick-PHY
alone does not exceed the SIFS timing bound. In Tick PHY, Rx la-
tency for (a) (4.84 µs) + Tx latency for (c) (1.86 µs) < SIFS (16 µs for
802.11ac [6]). Second, the MAC latency alone in Tick does not ex-
ceed the SIFS timing bound. With accelerators, the MAC latency of
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Figure 12: Correctness of Tick under different channels.

Frame Size 100 B 500 B 1000 B 1500 B 2000 B 3000 B 4000 B
Latency (µs) 334 356 382 404 415 449 489

Table 6: Overall latency in Tick.

processing the ACK frame is 7 µs (3 µs counts for MAC Rx, and 4 µs
counts for ACK processing and MAC Tx). This latency corresponds
to (2); it is smaller than the SIFS bound. Finally, the SIFS timing
bound is satisfied by PHY and MAC together in Tick. This is valid
because 6.70 µs + 7 µs + 1 µs (interface latency) < 16 µs.

8.4 Overall Performance
Overall Latency. We first gauge the overall latency of 802.11ac
SISO on Tick. It is measured end-to-end, starting from the data
frame generated by host computer, until it is received by the host
computer. This latency consists of interface latency (USB 3.0 inter-
face between host and Tx/Rx chain), Tx/Rx chain processing latency,
air transmission time, and host processing time. We vary the frame
length from 100B to 4000B and show the results in Table 6. Tick
achieves overall latency at hundreds of µs, compared with 2500 µs
latency in WARP [3]. We also notice that latency slightly grows
with the frame length (334 µs for 100B, 489 µs for 4000B). This is
because the air transmission time for a larger frame is longer.
Correctness. We also evaluate correctness under the following
three scenarios: (1) ideal: we loopback the output waveform created
by Tx into Rx, without traversing any channel. (2) controlled: we
connect Tx and Rx through an attenuator (10 dB and 20 dB atten-
uation here) which emulates the wireless channel over the air. (3)
real: we set RF frontends for Tx and Rx apart (1m here) and run
tests over the noisy radio channel; We also use a power amplifier
(Mini-Circuits ZRL-2400LN+ [25]) to amplify radio signals. We send
1500 B frames consecutively at various fixed rates (aka, modula-
tion and coding schemes (MCS)) and measure the percentage of
correctly received frames at the Rx host. Figure 12 shows the re-
sults for 10 MCSes (from BPSK to 256-QAM) under different coding
rates. We make three observations. First, our implementation is
logically correct as it achieves 100% correctness in the ideal case.
Second, correctness is sensitive to channel quality and MCS. Tick
achieves 100% correctness for BPSK and QPSK, but turns difficult to
support 256-QAM in both controlled and real-world experiments.
This matches our expectation. Last, we also notice the gap between
the controlled test and the real-world experiment. This is mainly
caused by the used power amplifier; the radio signal is still too
weak to support high MCS value. More efforts are clearly needed;
this is part of our future work.
Consumed FPGA Resource. Table 7 shows the resource uti-
lization on the Xilinx KC705 FPGA board. We count the amount of
flip-flop (FF), lookup table (LUT) and block RAM (BRAM) used by
PHY and MAC together. Tick consumes a modest amount of FPGA
resources (less than 28% of each resource for SISO). We notice that

Tick-Tx Tick-Rx

FF LUT BRAM FF LUT BRAM
Total Available 407 600 203 800 445 407 600 203 800 445

SISO:
Used 24 869 37 020 69 29 407 56 890 75
Utilization (%) 6.1 18.2 15.5 7.2 27.9 16.9

MIMO:
Used 38 359 43 457 133.5 59 501 133 173 136.5
Utilization (%) 9.4 21.3 29.9 14.6 65.3 30.6

Table 7: FPGA resource usage of Tick 802.11ac.

With Tick Without Tick

Language LoC Language LoC
Element definition XML 4 Verilog 151
Element connection XML 8 Verilog 80
Algorithm implementation Verilog 160 Verilog 160
Total LoC XML & Verilog 172 Verilog 391

Table 8: Lines-of-code needed to program a BCC element.
Work Metric WARP Tick Note

WURC [3] overall latency 2.5ms 334 µs
bandwidth 10MHz 80MHz

MIDU [4] transmission delay 50ms 100 µs delay between
bandwidth 500 kHz 80MHz consecutive frames

Duplex [21] processing latency 11 µs 4.91 µs Duplex modifies hardware
ACK latency 75 µs 9.85 µs code and cannot
bandwidth 10MHz 20MHz meet SIFS (>16 µs)

Table 9: Comparison of WARPLab and Tick.

LUT on the Rx side may become the main bottleneck, especially
when it runs MIMO (details later in §9.1). This supplies a reference
estimate for Tick implementation on other FPGA boards.
Coding Effort and Programmability. Tick requires less cod-
ing effort which implies nice programmability. Table 8 compares
the LoC to program a BCC Encoder element (from the toy example)
with/without Tick. With Tick, the LoC is merely half of that with-
out Tick. Moreover, as the library usually implements the elements
(the cost is inevitable and usually comparable across various SDR
platforms), Tick users only need to define and configure elements
in most cases. Since it uses XML, the cost is much lower (12 LoC vs.
231 LoC). In fact, the PHY implementation for the 802.11ac SISO
in Tick has 18 312 LoC in total, including 18 098 LoC for the PHY
library. Only 214 LoC is for element configuration and connec-
tion. Compared with the reference implementation without Tick,
which uses 23 706 LoC in Verilog, the total coding cost reduces by
22.8%; Moreover, excluding the efforts for the basic PHY blocks,
the programming efforts reduce from 5608 LoC to 214 LoC (26.2×
reduction).
Comparison with the State-of-the-Art SDR. We compare
Tick with WARP [22]. We consider both WARP’s reference design
and WARPLab, where the former is designed for low latency and
the latter is designed for good programmability, as discussed in
§4.3. For WARP’s 802.11n reference design, its latency for data pro-
cessing (2.48 µs, 802.11n) is comparable to Tick (2.48 µs, 802.11ac).
However, it is hard to program over the WARP’s 802.11n reference
design. We further compare Tick with several representative studies
using WARPLab [3, 4, 21] with latency results. We evaluate Tick
under similar or even more stringent settings. Table 9 summarizes
the key performance metrics. As a programmable SDR platform,
Tick reduces latency by around one-order-of-magnitude (even two
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PHY Tx PHY Rx MAC Tx MAC Rx

Latency 1.86 µs 21.62 µs 18 µs 3 µs
Proc. timea 15 101 µs 26 731 µs 10 504 µs 10 489 µs
a PHY air transmission time is 31 908 µs.

Table 10: Latency and processing time for A-MPDU in Tick.

orders of magnitude in [4]) than WARPLab, and supports higher
bandwidth. Moreover, Tick is easy to program and extend. Tick
supports 802.11ac and full duplex (see §9). The WARPLab’s incapa-
bility of satisfying the timing constraints has been reported in the
full-duplex [21], MIMO [37, 41] and 802.11ac [37, 39] cases.

9 CASE STUDIES
We use Tick to implement two case studies: 802.11ac (SISO, 2×2
MIMO) and full-duplex 802.11a/g, and assess their performances.
The former is to demonstrate the performance merits of Tick,
whereas the latter validates its programmability.

9.1 802.11ac SISO and MIMO
Implementation in Tick. For 802.11ac SISO, we follow the
implementation for PHY and MAC in §7 and evaluate it in §8. Here
we focus on 802.11ac 2×2 MIMO.

For 802.11ac 2×2 MIMO, we use the same MAC prototype as
802.11ac SISO. For MIMO, we have multiple spatial streams in
PHY. We thus duplicate the data pipeline to implement multiple
streams. Figure 13 shows the PHY block diagram. The PHY streams
in MIMO will merge and split (via parser). We use Multiplexer and
Demultiplexer elements to enable merge and parser operations. We
also implement the multi-input multi-output element to process
MIMO decoding.
Evaluation. We first assess the MAC performance. Since our
802.11ac MIMO and SISO prototypes use the same MAC, it achieves
the same reduction in latency and processing time (Table 4).

We next look at PHY latency reduction (summarized in Table 3)..
Note that our 802.11ac 2×2MIMO prototype does not support frame
aggregation and block ACK, but applies both MCDP and field-base
processing as 802.11ac SISO. We can see that, 802.11ac 2×2 MIMO
achieves latency and processing delay similar to 802.11ac SISO. In
particular, it achieves microsecond-level latency at PHY Tx (1.85 µs).
Regarding processing time, it is slightly faster than 802.11ac SISO
for a large frame (say, 1500 B). Tx reduces latency from 42.07 µs
to 32.56 µs, and Rx latency reduces from 61.85 µs to 43.55 µs. This
is because MIMO supports two streams and certain processing
functions are run in parallel. Based on the used air transmission
time, the timing requirement for SIFS can also be met following the
analysis similar to §7.

We also test the latency and processing delay of the maximum A-
MPDU length frame (1 048 575 B) for the 802.11ac protocol. Table 10
shows the results. The PHY latency is the same as 802.11ac SISO,
but processing time is significantly longer due to more data frames
being sent out.

Since the MIMO implementation approximately doubles the used
elements compared with SISO, the consumed resources also roughly
double, as shown in Table 7.

Finally, we measure the maximum data processing capacity (mea-
sured in Mbps) that Tick PHY can support. SISO Tx supports up
to 556.55Mbps and SISO Rx supports up to 314.09Mbps. Both ex-
ceed the throughput maximum stipulated by the standards [6]
(263.3Mbps using 64-QAM2). MIMO Tx supports up to 1113.1Mbps
and MIMO Rx supports up to 632.4Mbps. The throughput require-
ment from the standard (526.5Mbps using 64-QAM2) is also met.

Note that, to further boost performance, users do not need to
change the SDR architecture. They just need to focus on optimizing
the algorithm of a module or upgrade the FPGA capacity.

9.2 Full-Duplex 802.11a/g
Implementation in Tick. We implement a full-duplex
802.11a/g to demonstrate the programmability of Tick. Figure 14
shows its PHY function blocks. To support the channel estimation
(self-interference channel and target channel) , we introduce a cus-
tomized new preamble field to the 802.11a/g frame. This field is
critical to fully realize full-duplex 802.11a/g. We observe that, using
frame-based processing without Tick, one would have to rewrite
every standard module to accommodate the newly added field. In
contrast, with Tick, only lightweight effort is required to modify or
customize some elements provided by the Tick library (marked in
Figure 14). In particular, our implementation results in a full-duplex
PHY with 22 elements, consisting of 25 740 lines of code. Among
these elements, 15 elements are the standard ones without any
modification (e.g., Interleaver, IFFT, Viterbi Decoder) provided by
the Tick PHY library. We modified four elements from the library,
i.e., Pilot Insertion, Channel Estimation, Timing Synchronization,
and Phase Tracking. We customized three elements: Preamble In-
sertion, Tx-Rx Path and Self-Interference Cancellation. As a result,
the time and invested human effort are reduced.

We further implement a simple MAC for full duplex with five
accelerators. We use CRC-32 and RF communication accelerators
from the Tick MAC library. We have customized accelerators of
MAC-PHY configuration, Timing Control and Customized ACK.
Evaluation. We have also discovered the major gain by using
field-based processing with full-duplex 802.11 a/g. Tick achieves the
smallest latency (0.07 µs) for PHY Tx, which further reduces 1.79 µs
(27× reduction) compared with 802.11ac. This latency is smaller
than that for 802.11ac PHY, because the used preamble is fixed
for every frame. Therefore, we precompute this field and bypass
the bottleneck IFFT element in our field-based processing. The
measured PHY latency and processing delay for the Tick-enabled
full-duplex 802.11a/g are summarized in Table 11.

The maximum data processing capacity achieved by both half-
duplex Tx and Rx are 122.73Mbps, following the previous definition.
Therefore, our full-duplex 802.11a/g supports up to 245.46Mbps,
which exceeds double throughput of the 802.11a/g protocol, which
is 108Mbps.

Finally, Table 12 shows the FPGA resource utilization. Our im-
plementation of full-duplex 802.11a/g consumes the amount of
resources on KC705 FPGA with less than 10% on Tx and less than
20% on Rx.

2When using the long GI mode.
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Figure 13: Transmitter and receiver modules for 802.11ac (MIMO).

Figure 14: Transmitter and receiver modules for full-duplex 802.11a/g.

PHY MAC

Tx Rx Tx Rx
100 B:

Latency 0.07 µs 13.86 µs 0.25 µs 1.14 µs
Proc. timea 13.88 µs 49.79 µs 1.92 µs 2.17 µs

1500 B:
Latency 0.07 µs 13.86 µs 0.25 µs 1.14 µs
Proc. timeb 92.50 µs 115.57 µs 23.37 µs 28.18 µs

a PHY air transmission time for 100 B is 120 µs.
b PHY air transmission time for 1500 B is 328 µs.

Table 11: Latency and processing time of Tick full-duplex
802.11a/g.

Tick-Tx Tick-Rx

FF LUT BRAM FF LUT BRAM
Total Available 407 600 203 800 445 407 600 203 800 445
Used 8111 19 552 41.5 22 773 40 820 93.5
Utilization (%) 2.0 9.6 9.3 5.6 20.0 21.0

Table 12: FPGA resource usage of Tick full-duplex 802.11a/g.

10 RELATEDWORK
A number of software-defined radio (SDR) platforms have been well
documented in recent years [2, 7, 22, 26, 27, 31–35, 40]. They achieve
different goals following different designs. The software-centric de-
sign like GNU Radio [34] or Sora [33] offers good programmability
at the cost of latency guarantee and fine-grained timing control,
since they rely heavily on CPU computations. Atomix [7] proposes a
modular software framework targeting DSP, which cannot meet the
timing requirement of 802.11a. Ziria [31] designs a domain-specific
programming language for SDR, but it is limited to PHY only. An
alternative solution is to take the hardware-centric design approach,
such as AirBlue [26], WARP [22] or OpenMili [40]. Proposals in
this category ensure higher processing capacity and lower latency.
However, they do not offer good programmability support at both
MAC and PHY, due to the intricacy of hardware programming.
None can achieve both low latency and good programmability.

Tick explores software and hardware codesign approaches. Its
modular design is inspired by the Click router [23], but applies
domain-specific optimizations at wireless PHY and MAC to boost

performance. Our multi-clock-domain pipelining leverages design
ideas from the architecture field [9, 29]. We adapt it to speed up the
PHY pipeline. Accelerator-based architecture in FPGA has been ap-
plied for data centers [13, 19]. Our accelerator works on a different
problem domain. It offloads computation and communication from
the embedded processor at MAC.

11 CONCLUSION
Building highly programmable SDR systems with low latency per-
formance can be challenging; no existing systems can achieve both.
Of course, there are a number of technical challenges for both PHY
and MAC. However, it is still conceptually feasible. In the SDR
context, software techniques are great to promote programmabil-
ity, while hardware can ensure high performance in terms of low
latency and accurate timing control. This makes a case for us to
explore software and hardware codesign techniques. The outcome
is the Tick SDR platform reported in this paper.

The design and prototype of Tick is a three-year effort with
many ups and downs. Many seemingly nice techniques turn out
to be ineffective. They force us to explore new solution ideas, thus
producing Tick. To date, it has been under internal use and tests at
three university and research sites for over three months. On one
hand, we hope it can eventually yield a reliable SDR platform with
low latency and programmability for us and the broad research
community. On the other hand, we are using it to explore domain-
specific architecture designs for wireless networking systems in
the long run. Along this general direction, we are just starting.
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